5.4 Coastal and Marine Assets

5.4.1 OVERVIEW - DESCRIPTION AND VALUES

The terrestrial and oceanic processes of the Burnett Mary region have produced a dynamic and diverse coastal, estuarine and marine ecosystem.

The Burnett Mary region lies within the Tweed-Moreton marine bioregion where the landmark Fraser Island (which traps warm waters in Hervey Bay and created the Great Sandy Strait) marks the southern boundary of the Great Barrier Reef lagoon (the largest and most diverse coral reef system in the world). The mix of tropical and subtropical zones that characterises the Burnett Mary region has resulted in some of Australia's greatest coastal, estuarine and marine biodiversity. This biodiversity underpins environmental, commercial and recreational growth in the Burnett Mary region.

Our diverse range of coastal, estuarine and marine habitats (some of which are protected or conserved under World Heritage or Ramsar listings) include: the deep continental shelf located just off Fraser Island (influenced by the East Australian Current), rocky shores, dunes, coastal and tidal wetlands - mangrove forests, salt marsh and samphire flats (backed by peat swamps), seagrass meadows, coral and other reefs (including GBR's southernmost reef-forming reefs); and soft-bottom habitats. This habitat mosaic has critical connections that enable and are influenced by the movement of water, sediment, plants and animals that are essential for life processes.

The region's plants and animals, including significant iconic and migratory species such as shorebirds, grey nurse sharks, humpback whales, dugongs, and Indo-Pacific humpback dolphins, rely on healthy and available habitat. Our region contains the east coast's largest dugong population south of Torres Strait and six of the world's seven species of endangered and vulnerable marine turtles. Of these, loggerhead, green and flat-back turtles regularly nest along the region's foreshores. Other significant species have iconic or economic value and sustain our tourist and fishing industries.

Coastal, estuarine and marine habitats are often affected, to varying degrees, by natural events such as extreme tides, floods and severe storms. These physical processes are normal, natural and essential for ecosystem health. In contrast, human-induced impacts often cause changes in the natural systems from which the plants and animals cannot recover effectively (their resilience to disturbances has been reduced) and these impacts contribute to major losses of biodiversity. Pressures on coastal, estuarine and marine environments include: coastal development, pollution such as sewage and stormwater runoff, recreational and commercial fisheries, public access, weeds and pests and catchment land management that can impact on both environmental flows and water quality.

Balancing healthy ecosystems with natural resource use will continue to support our lifestyle and wellbeing and provide a sustainable future for our region.

5.4.2 Asset Delineation

The most logical benthic (non-water) asset delineation at the strategic level was a combination of the following classification classes:

- Aquatic Zones
- Dominant Energy Regimes
- Dominant Biotic Structure
- Consolidation Type

This system was designed by the Queensland Wetlands Program (Department of Environment & Heritage Protection) as part of a project entitled: *Queensland coastal marine and estuarine habitat classification for enhanced coastal planning and management outcomes.*

Marine and estuarine ecosystems are dynamic and influenced by a complex range of environmental variables and undergo cyclic changes at temporal and spatial scales. Both marine and estuarine systems can contain intertidal and subtidal habitats. Intertidal habitat is exposed at low tides and inundated by tides. Subtidal habitat is continuously submerged.

While no two estuarine or marine habitats are entirely the same, many provide similar functions to each other. A comprehensive classification of habitats into ecologically relevant groups that share similar ecological and physical drivers is essential for effective management. The table below simplifies the classification of the region's coastal, estuarine and marine assets. It is recognised that there is some variation between individual river basins – these differences can be attributed to spatial differences in temperature, water availability and exposure to dominant energy sources – such as wind/waves and climatic events – these are particularly evident in asset classes ME 6 and ME 7. Further delineation by geographic area for these asset classes may be necessary at the implementation level to capture the discrete differences in asset sensitivity and adaptive capacity in the region.

Figure 1 identifies the list of Estuarine and Marine Benthic Assets that were defined through the Science Panel Assessment undertakings for the Plan.

Asset Code	Description	Aquatic Zone	Dominant Energy Regime	Dominant Biotic Structure	Consolidation
	Intertidal Rock			_	
ME 1	Platform	Intertidal	Low	Bare	Consolidated
ME 2	Sandy Beach	Intertidal	Undifferentiated	Bare	Sand
ME 3	Mud Flat / Sand Flat	Intertidal	Low	Bare	Mud
ME 4	Basalt Boulder Beach / Cobble	Intertidal (HAT to MSL)	Undifferentiated	Bare	Boulders
ME 5	Tidal Salt Pan	Intertidal	Low	Encrusting	Unknown
ME 6	Intertidal Seagrass	Intertidal	Low	Low Veg	Unknown
ME 7	Tidal Salt Marsh	Intertidal	Low	Low Veg	Unknown
ME 8	Mangrove	Intertidal	Low	Med-High Veg	Unknown
ME 9	Intertidal Sessile (Corals and Sponges)	Intertidal	Low	Sessile Fauna	Unknown
ME 10	Subtidal Platform	Subtidal	Low	Bare	Consolidated
ME 11	Sandy Bottom	Subtidal	High/Low*	Bare	Sand
ME 12	Muddy Bottom	Subtidal	Low	Bare	Mud

FIGURE 11: COASTAL, ESTU	JARINE AND MAR	RINE ECOSYSTEMS	- BENTHIC ASSETS OF THE BURNETT MARY

	Pebbly Bottom				
ME 13	(includes gravel)	Subtidal/Intertidal	Undifferentiated	Bare	Unconsolidated
	Seagrass Subtidal -			Low-Med	
ME 14a	Baffle	Subtidal	High	Veg	Mud /Sand
	Seagrass Subtidal -			Low-Med	
ME 14b	Coastal Catchments	Subtidal	Low	Veg	Mud /Sand
				Low-Med	
ME 15	Algae	Subtidal	High	Veg	Mud /Sand
	Sessile (Corals,				
	Sponges & Coralline				
	Crustose Algae) fauna				
	Inshore (GSS & 2km			Sessile	
ME 16	along Coast)	Subtidal	Low	Fauna	Consolidated
	Sessile (Corals,				
	Sponges &				
	Rhodoliths) fauna				
	Inshore (GSS & 2km			Sessile	
ME 17	along Coast)	Subtidal	Low	Fauna	Unconsolidated
	Sessile (Corals and				
	Sponges) fauna			Sessile	
ME 18	Offshore	Subtidal	High	Fauna	Unknown

* High energy regimes north of Agnes Water and south of Rainbow Beach (and offshore of Fraser Island) and low energy regimes restricted by Fraser Island, the Capricorn Bunker Group of islands and reefs to the north west.

Water Asset Types

In the same way that we recognise benthic assets as habitat for coastal and marine flora and fauna, we also have to include water itself as habitat for coastal, estuarine and marine species.

In terms of the region's waters, predominantly there are two wave energy regimes – the high energy regimes experienced north of Agnes Water and south of Rainbow Beach (and offshore of Fraser Island) and the comparatively low energy regimes restricted by Fraser Island, the Capricorn Bunker Group of islands and reefs to the north west.

In addition, various sub-regional water types, including individual seascapes, can be found within the region. Broadly these consist of eight areas A-H – although only seven of these (B-H) are located within the Burnett Mary region. The water types have been broadly classified using drivers such as dominant energy source and freshwater influence (surface water runoff) – which together define turbidity, and temperature. Spatial information also influences exchange time which is a key differential for individual seascapes within sub-regions C and G. Table 2 provides an overview of these key differences.

It is recognised that these water types have been identified through the classification process that is currently under development by the Queensland Wetlands Program (Department of Environment & Heritage Protection). This process has not been finalised for the Wide Bay Burnett with issues such as drivers versus attribute features not yet resolved. While attribute-based classification of waters can be applied independently, drivers and processes (which fall outside the water column descriptors) are likely to provide spatial and temporal influence on individual water types. It should also be notes that seascapes are also present in other sub-regions (and not just B, C & G) but the boundaries of these have not yet been considered.

TABLE 2: COASTAL, ESTUARINE AND MARINE ECOSYSTEMS - WATER TYPES OF THE BURNETT MARY

SR	Subregion	Energy source	Exchange time	Temperature	Water	Turbidity
A	Fitzroy-Keppels-Corio (located outside the regional boundary)	Tidal, some wind energy offshore. Tides are medium, 4.5-5m tides, north 6m tides. Wind energy is lower than tidal.	Medium - inner area near has comparatively long exchange time.	Fairly stable temperature, usually 23- 26°C. As low as 21°C in cold winter. Fitzroy river can reach 15 °C in a cold winter. Temperature range is an important attribute.	Saline – after a flood may be low salinity for 6-9 weeks as far as Rockhampton. Mean annual salinity for Area 4 is lower than Hervey Bay. Three freshwater sources. Fitzroy, very episodic, ambient is dry tropics with little freshwater input for 8-9 months due to the regulated flow -some flow for 3 months JFM. Flow is strongly seasonal – can be high on a big flood or low volume wet season. Well-mixed, flood freshwater sits on top, but frequently mixed.	High; Dominated by Fitzroy R. Keppel Bay shallow, turbid inshore. Fitzroy flows out turbid most of the time. Small freshwater inputs from Coorooman Ck (turbid) & Corio Bay (cleaner, sand based system, poorer nutrients, tannins). East of the Keppel Islands is usually clear water, except during Fitzroy floods when the plume extends far beyond the Keppels. Shallow area north of Curtis Island is either turbid or clear depending on prevailing conditions.
В	Gladstone Harbour (the bottom section of this water type is located within the Burnett Mary region) Highly modified system, a lot of development on periphery, dredging, shallow. Harbour dredged to 20m. Remainder of the subregion averages 5-10m average depth.	Tidal, currents are very strong due to tidal exchange. Tidal amplitude is 30-50cm lower than in subregion A. High due to going through channels. Tidal water going up the Narrows doesn't leave the harbour. There are two tidal feeders: one north of Facing Island between Facing and Curtis islands creates 3 tidal effects.	Medium, except for the Narrows.		Saline - fresh during large events. Calliope & Boyne Rivers are the two main feeders. The Calliope is unregulated, whereas there is little exchange of freshwater from the Boyne: 2002-2011 all freshwater runoff was retained within Awonga dam, with Boyne estuary acting as an enclosed bay. During 2011, 12, 13 Awonga dam overflowed – Boyne changed from being an enclosed bay, to a normal river system. Harbour can become fairly fresh except for the outer harbour areas. Calliope medium, Boyne low are comparatively smaller freshwater input than Fitzroy. Well mixed.	High-medium; ranging from turbid to clear. During big tides highly turbid, persistent SE prevailing winds create turbidity. During winter the area becomes clearer during the low tides. Boyne is naturally clearer, due to its gravel based rock. The Calliope is only turbid in lower reaches, clearer upstream even on a medium size flood. Seasonally turbid with low light in summer.
C	Colosseum-Rodds-Bustard Head-south to Roundhill Head High condition area, highly valued area is a draft HEV. Shallow bay, <10m, extensive	Half tidal energy of B: force is medium – 2-3m tidal range. A complex tidal mix exists due to the number of contributing channels.	Reasonably confined – Medium to high.		Well mixed. Saline bay most of the time, seldom low salinity. Creeks have short catchments, experience intermittent flow for a day or two. Limited freshwater, more sand than mud, Creeks feeding into the area are a natural system with no barriers. Overland	Medium; 75% turbid, 25% clear. Clearer system, sand based, not mud based. Due to the smaller tidal range, less energy contributes to turbidity. C is a much clearer system than area B.

	intertidal areas, extensive	There is a tidal channel			flow is low. SR C misses the heavy tropical	
		behind Hummock Hill			rain events. Worthington Creek is a very	
	channels, estuaries include	Island. Wind - Medium;			minor freshwater source.	
	Colosseum, 12 mile, 7 mile Ck,	wind <i>direction</i> differs				
	Worthington, Pancake Ck.	greatly from B. Wave			Well-mixed, quite shallow.	
		exposure – SE swells				
		are deflected around				
		the peninsulas.				
D	Capricorn Channel inter-reefal	Ocean currents	Medium	Uniform,	Saline - usually r ainfall . Episodic riverine	Low with low light attenuation.
	area, east side of Port Clinton	medium, wind medium;	residence time.	usual sea	input from the Fitzroy River during the	
	Most water here is 20-30m	tidal energy is quite		temp, 23-26	largest flood events.	
	deep, which is the depth where	<i>high</i> to the north		°C.	Well mixed, not aware of any vertical	
	wind-waves & bottom shear	towards Shoalwater			stratification.	
	meet. East of Shoalwater Bay is	Bay which experiences				
	slightly deeper– "fern	6m – to the south tidal				
	grounds"- soft coral /gorgonian	energy is <i>medium</i> – 3m				
	to 1m in height on bottom.	tides. D2 has a higher				
		tidal range than D1,				
		where offshore the				
		tides are much smaller.				
Е	Capricorn Bunker group	East side of the islands			Saline - Water type is close enough to D1 &	
	including Lady Musgrave Island	experience high wave			D2 - should it be D3? [May not differ enough	
	Islands reduce the energy flow,	energy – moderate tidal			to make it a different water body]. Well-	
	although there is less reef	flows through the reefs.			mixed vertically, although topographic	
	matrix than the rest of the GBR				effects are slight compared with the rest of the GBR.	
	to the north.				the GBR.	
F	Round Hill Head to Elliott	Wave action via wind as	Low - very high	21-25°C.	Saline – similar to seawater. Input is small:	Low turbidity. Light availability is
	Heads	the energy driver for	exchange rates.		Kolan River has interbasin freshwater	good.
	Benthos is a "desolate sand	the SE swell. Exposure			transfers to the Burnett, means it acts like	
	area" with very few features	to some SE swell i.e.			an enclosed bay; Littabella; Burnett is	
	Is the Capricorn Eddy drawing	through the gap			impounded thus ambient flows are low;	
	in nutrients by upwelling?	between Fraser Island			there is moderate freshwater input into the	
	Probably there is a high	and the GBR – surf			system during highly seasonally episodic	
	delivery of nutrients.	experienced at Agnes			events. Freshwater input dispersed evenly	
	Chlorophyll A is low, high	Water. Few			along the whole coastline during ambient	
	uptake & growth? BENTHIC	topographic features			conditions, experiencing low levels of input	
	· · · · · · · · · · · · · · · · · · ·	- F - G F			s, entre of the second s	

	BIOTA are species diagnostic of	including Lady Elliott			except in events.	
	a sandy bottom and reasonably	reduce the wave energy			M-L volumes. Well-mixed, shallow, wind	
	clear water, characteristics that	flow. Its eastward			driven.	
	are very important for main	boundary is Lady Elliott				
	fishery species in this area:	to Breaksea Spit				
	scallops, Moreton Bay bugs,	(excluding the Spit).				
	spanner crabs (sandy substrate	(South of here Fraser				
	users) all benthic feeders.	Island is the energy				
	Sandy areas are important	boundary).				
	ecologically to coral, bacterial	boundary).				
	layer on sediment fixes N from					
	the atmosphere into a					
	biologically usable form that					
	coral can use. In this area is					
	some coffee rock substrate					
	with soft coral growing on					
	these areas but due to					
	reworking of sediment through					
	sand movement there is less					
	coffee rock & soft coral than in					
	Hervey Bay. DPIF & Roland					
	Pitcher mapped deepwater					
	seagrass,					
	sponge/gorgonian/soft coral					
	gardens.					
G	Hervey Bay (Elliott Heads-	3 energy drivers – wind,	Very low to	Warmer water	High nutrients in close to the shore. There	Intermittently turbid. Mid Strait is
	Breaksea Spit to Wide Bay Bar)	tides, slight waves	high. South is	than further	us another waterbody at the bottom (G2) –	mostly turbid. Locally wind generated
	Consists of 3 areas:	during SE winds, up to	always tidal.	north– a	the highly stratified highly saline water for	turbidity in northerly – from Burrum
	a) Platypus Bay ciguatera,	1.5m waves during	Tides running	degree	9-10. This is unique; it drives the current	to Hervey Bay city. 2-3m tides. Turbid except at slack tide. Clearer in
	dinoflagellates, water sits /	northerlies. Blocking all	to south &	warmer than	circulation, where the water from the sea	northern Straits. Very significant
	slack.	wave energy is Fraser	north – relief	north,	(Ribbe, Grawe references).Mary is the major	groundwater input from Fraser Island
	b) Hervey Bay & northern	Island. Sand pushed	shows the	especially in	water input – highly episodic / seasonal.	– freshwater.
	Great Sandy Strait	from east to west.	boundary of	winter.	Burrum is a minor influence.	
	c) Remainder of Great Sandy	Western side is slightly	fast tidal flows.	Summer		Middleton et al 1987 describe Fraser
	Strait.	more wind exposed in	Amphidromal	inshore water		Island 'mangrove winter waters'

	Benthic biota driven by benthic	SE (Jan-Aug); south side	point mid Strait,	temperatures		nutrient rich, low oxygen, entering
	structure. More substrate	exposed in NW (Aug-	north of	can go to		EAC at 100m depth both N and S of
	structure than SRF: such as old	Jan).	Moonboom	32°C.		Fraser. 3 states exist when a fresh.
	river channel, lots of broken	,	Island where			
	patches of coffee rock reef &		tides meet from			
	coral, deep holes associated		both north and			
	with the old river bed that		south.			
	were isolated from the		Exchange in			
	remainder of the river bed due		Platypus Bay /			
	to sand. Coffee rock reef		Hervey Bay is			
	around Rooney's Pt. Sand		very low.			
	dunes are moving west from		,			
	Fraser Island. The Great Sandy					
	Strait is a complex system.					
	Extensive intertidal and					
	subtidal banks mostly					
	composed of sand. Subtidal					
	consolidated substrates within					
	the Strait are a mixture of					
	coffee rock and sandstone					
	reefs.					
Н	Breaksea Spit to NSW Border	Current dominated by	Moderate	Temperature	Saline – seawater. Inputs are scattered and	Clearest of all subregions.
	and beyond – the Tweed	EAC & wind (waves,	nutrients.	of Area 2°C in	even i.e.: Noosa, Maroochy, Mooloola,	
	Narrow distance between the	swell). Strongly oceanic.		summer is	Nerang, Tallebudgera Creek, Tweed River.	
	coast and the 100m contour,	Energy magnitude is		elevated 1.5-	Diverse point source.	
	steep drop off close to shore.	high-energy wind &		2degrees over		
	Banks occur offshore e.g.	wave, drives high		25years, in the		
	Gardener banks etc.	coastal erosion.		southern GBR		
	Reefs off Moreton Island are			lagoon. See		
	northernmost extent of kelp.			Sea Surface		
	Demersal fish populations are			Temperature		
	changing - fish moving down on			maps –		
	EAC due to climate change			deeper waters		
	include: Red Emperor,			have less		
	Nannygai off the Gold Coast;			temperature		

Red throat emperor were	change than	
previously north of Fraser	surface	
Island in 1970s-80s, now off	waters.	
Cape Moreton; Central Qld		
species including finger mark &		
golden snapper are now		
common as far south as Tin		
Can Bay.		

If required, it is also possible to further sub-divide these assets into individual **seascapes**. This is particularly relevant for the near coastal systems (C & G) where there is greater sub-regional variation.

Colosseum to 1770 seascapes (C): Colosseum Inlet (C1), 7 mile creek (C2), Turkey Beach Rodds Harbour (C3), Pancake outer – Jenny Lind connection is very limited only (C4), Rodd's Bay (C5), Bustard Bay to 1770 (C6).

Hervey Bay / Great Sandy Strait seascapes: Breaksea spit to Mary palaeochannel (G1), Platypus Bay (G2), Mid to western Hervey Bay (G3), Elliott River (G4), Northern Great Sandy Strait to tidal delta of Hervey Bay (G5), Burrum Coastal to Hervey Bay City (G6), Booral wetlands (G7), Mary Delta /central Great Sandy Strait (G8), Wide Bay Harbour (G9), Kauri Creek (G10), Tin Can Inlet (G11), Hypersaline bottom water south west Hervey Bay (G12), Mary-Susan (G13), Burrum Estuary (G14) and Central Hervey Bay (H15).

As these classifications are currently based on a provisional classification system, the higher level or water column types were used for the purposes of this assessment.

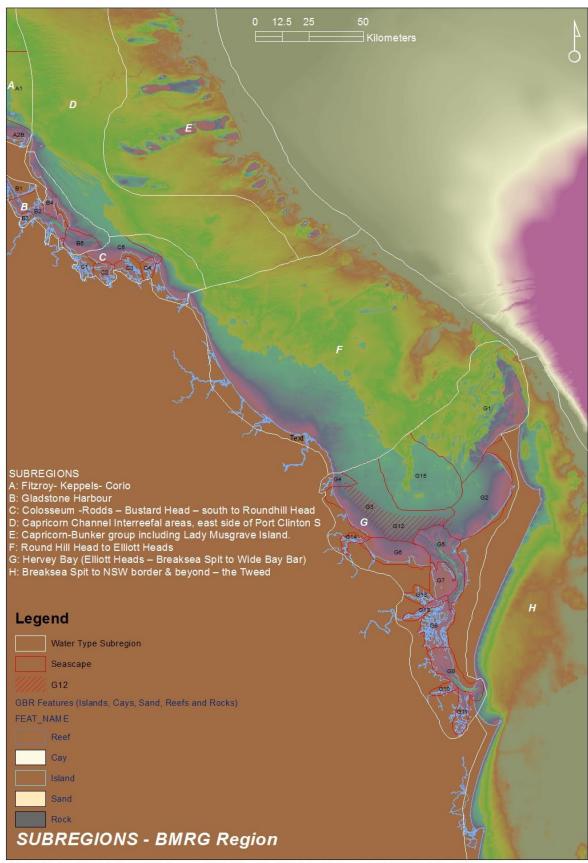


FIGURE 1: COASTAL, ESTUARINE AND MARINE ECOSYSTEMS WATER TYPES OF THE BURNETT MARY

Y:\WG\BAT\Projects\130607_EstMarHab_MZ_\maps_mxds\WaterColumnMaps\WaterColumnRegions.mxd 30/09/2014 Maria Zann EHP

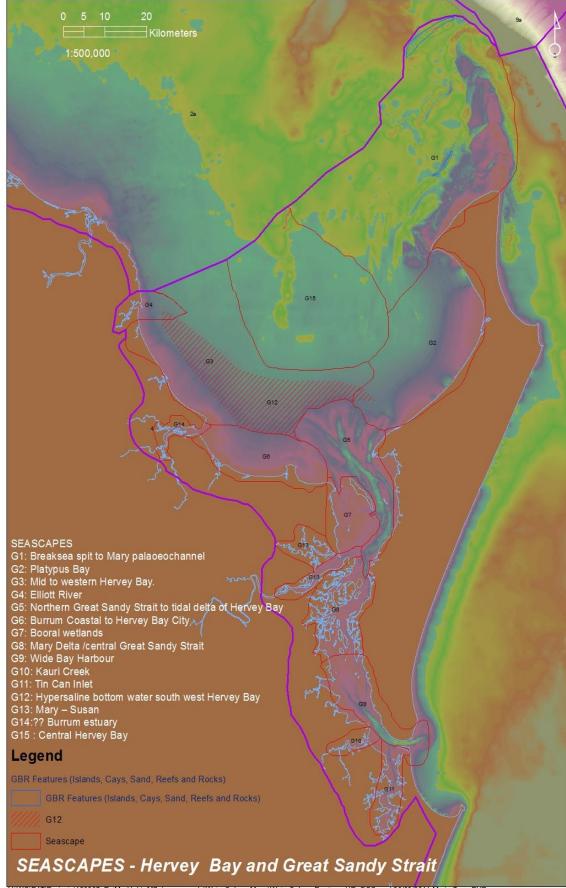


FIGURE 2: SEASCAPES OF HERVEY BAY AND THE GREAT SANDY STRAIT

Y:\WG\BAT\Projects\130607_EstMarHab_MZ_\maps_mxds\WaterColumnMaps\WaterColumnRegions_HB_GSS.mxd 30/09/2014 Maria Zann EHP

5.4.3 POTENTIAL CLIMATE FUTURES

Under a Potential Future Climate at **2030 and 2090**, a number of climate model simulations have been made by the CSIRO and Bureau of Meteorology. These are based on climate model simulations following a set of greenhouse gas, aerosol and land-use scenarios that are consistent with socioeconomic assumptions of how the future may evolve. The well mixed concentrations of greenhouse gases and aerosols in the atmosphere are affected by emissions as well as absorption through land and ocean sinks.

There are four Representative Concentration Pathways (RCPs) underpinned by different emissions. They represent a plausible range of radiative forcing (in W/m^2) during the 21^{st} century relative to pre-industrial levels. Radiative forcing is a measure of the energy absorbed and retained in the lower atmosphere. The RCPs are:

- RCP8.5: high radiative forcing (high emissions)
- RCP4.5 and 6.0: intermediate radiative forcing (intermediate emissions)
- RCP2.6: low radiative forcing (low emissions).

RCP8.5, represents a future with little curbing of emissions, with carbon dioxide concentrations reaching 940 ppm by 2100. The higher of the two intermediate concentration pathways (RCP6.0) assumes implementation of some mitigation strategies, with carbon dioxide reaching 670 ppm by 2100. RCP4.5 describes somewhat higher emissions than RCP6.0 in the early part of the century, with emissions peaking earlier then declining, and stabilisation of the carbon dioxide concentration at about 540 ppm by 2100.

RCP2.6 describes emissions that peak around 2020 and then rapidly decline, with the carbon dioxide concentration at about 420 ppm by 2100. It is likely that later in the century active removal of carbon dioxide from the atmosphere would be required for this scenario to be achieved.

For the purposes of this assessment, only RCP4.5 and RCP8.5 were considered as current emissions are already tracking above this level and radical intervention would be required to reduce radiative forcing below these levels.

The Coastal & Marine systems of the region were assessed by an External Expert Panel (2014) to determine the vulnerabilities to climate change of the various asset classes. The detailed results of the Assessment are contained within Appendix X. It was deemed that, in general, Coastal & Marine systems of the region were sensitive to the following climate change exposure indicators:

- Air temperature Increases;
- Increasing lengths of dry periods;
- Increased frequency of intense rainfall events;
- Extreme coastal sea levels;
- Riverine and ocean temperature increase; and
- Ocean Acidification.

Under a Potential Future Climate at **2030 and 2090**, the following predictions have been made by the CSIRO and Bureau of Meteorology:

Climate	Potential Climate Future 2030	Potential Climate Future 2090
Scenario		
RCP 4.5	 Air temperature increase (annual maximum) 0.9°C (0.6-1.3). Time spent in drought is projected, with medium confidence, to increase over the course of the century. Understanding of the physical processes that cause extreme rainfall, coupled with modelled projections, indicate with high confidence a future increase in the intensity of extreme rainfall events, although the magnitude of the increases cannot be confidently projected. Increase in sea level (Gladstone) 0.13m (0.09-0.17). Ocean temperature increase (Gladstone) 0.7°C (0.5 to 1.0). Ocean acidification (predicted pH change) -0.07 (-0.07 to -0.06). 	 Air temperature increase (annual maximum) 1.9°C (1.2 to 2.9). Time spent in drought is projected, with medium confidence, to increase over the course of the century. Understanding of the physical processes that cause extreme rainfall, coupled with modelled projections, indicate with high confidence a future increase in the intensity of extreme rainfall events, although the magnitude of the increases cannot be confidently projected. Increase in sea level (Gladstone) 0.47m (0.30 to 0.64). Ocean acidification (predicted pH change) -0.10 (-0.18 to 0.38).
RCP 8.5	 Air temperature increase (annual maximum) 1.0°C (0.5-1.4). Time spent in drought is projected, with medium confidence, to increase over the course of the century. Understanding of the physical processes that cause extreme rainfall, coupled with modelled projections, indicate with high confidence a future increase in the intensity of extreme rainfall events, although the magnitude of the increases cannot be confidently projected. Increase in sea level (Gladstone) 0.13m (0.09 to 0.18). Ocean temperature increase (Gladstone) 0.8°C (0.5 to 1.0). Ocean acidification (predicted pH change) -0.08 (-0.08 to -0.07). 	 Air temperature increase (annual maximum) 3.6°C (2.9 to 4.7). Time spent in drought is projected, with medium confidence, to increase over the course of the century. Understanding of the physical processes that cause extreme rainfall, coupled with modelled projections, indicate with high confidence a future increase in the intensity of extreme rainfall events, although the magnitude of the increases cannot be confidently projected. Increase in sea level (Gladstone) 0.64m (0.44 to 0.86). Ocean temperature increase (Gladstone) 2.9°C (2.1 to 3.5). Ocean acidification (predicted pH change) -0.14 (-0.26 to 0.45).

From Exposure Indicators, as per Vulnerability Assessments – based on Dowdy, A. et al. 2015, East Coast Cluster Report, Climate Change in Australia Projections for Australia's Natural Resource Management Regions: Cluster Reports, eds. Ekström, M. et al., CSIRO and Bureau of Meteorology, Australia. From this, it is clear that coastal and marine assets and their associated values (Individual habitats and species) would be vulnerable. Ultimately, each of the Coastal and Marine asset classes will be susceptible to one or multiple climate change exposure indicators. For example – mangroves in the Burnett River will respond to changes in air temperature, increasing length of dry periods (drought), increased frequency of intense rainfall events and changes in sea level. These are summarised below.

Asset code	Asset description	Air temperature	Drought	Storms	Sea Level Rise	Ocean temperature	Ocean acidification
ME 1	Intertidal Rock Platform	х	х	XXX	х	х	X ¹
ME 2	Sandy Beach	Х		Х	Х	Х	X ²
ME 3	Mud Flat / Sand Flat	Х	Х	Х	Х	Х	X ²
ME 4	Basalt Boulder Beach / Cobble	х	х			Х	
ME 5	Tidal Salt Pan	Х		х	х	Х	
ME 6	Intertidal Seagrass	Х	x	Х	Х	Х	X ²
ME 7	Tidal Salt Marsh	Х	Х	Х	Х	Х	X ²
ME 8	Mangrove	Х	Х	Х	Х	Х	X ²
ME 9	Intertidal Sessile (Corals and Sponges)	Х	Х	Х	Х	Х	X ³
ME 10	Subtidal Platform			Х	Х	Х	X ¹
ME 11	Sandy Bottom			Х	Х	Х	X ²
ME 12	Muddy Bottom			Х	X	Х	X ²
ME 13	Pebbly Bottom (includes gravel)			Х		Х	X ²
ME 14a	Seagrass Subtidal - Baffle		Х	Х	Х	Х	X1
ME 14b	Seagrass Subtidal - Coastal Catchments		Х	х	х	Х	X1
ME 15	Algae			Х		Х	X ¹
ME 16	Sessile (Corals, Sponges & CCA) fauna Inshore			Х	Х	Х	X ³

TABLE 3: BROAD ASSESSMENT OF BENTHIC ASSET VULNERABILITY TO DIFFERENT COMPONENT OF CLIMATE CHANGE EXPOSURE.

ME 17	Sessile (Corals, Sponges & Rhodoliths) fauna Inshore		Х	Х	Х	X ³
ME 18	Sessile (Corals and Sponges) fauna Offshore		Х	Х	Х	X ³

X¹ Molluscs will struggle to lay down shell, leading to algal dominated rock platforms

X² Implications for both macro- and meiofauna

X³ Calcareous structures more susceptible to borers

To enable vulnerability to be prioritised across each of the assets (habitat – 18 and marine water types – 6), response and vulnerability to six potential climate change impacts were more formally assessed. These were:

- 1. Increase in annual maximum (change in °C)
- 2. Duration of time spent in drought (% change from baseline)
- 3. Increased frequency of intense rainfall events (% increase from baseline)
- 4. Extreme Coastal Sea Level Rise (increase in sea level in metres)
- 5. Increased Ocean Temperatures (increase in °C)
- 6. Increased Ocean Acidification (predicted pH).

From this the following vulnerability assessment was derived (see Appendix X for full results).

Asset		Exposure	Sensitivity - average	Sensitivity - max	Potential Impact - average	Potential Impact - max	Adaptive capacity	Vulnerability - average	Vulnerability - max
ME8	Mangrove	5	4.5	6.0	22.5	30.0	2.4	11.7	15.6
ME9	Intertidal sessile	5	3.7	6.0	18.3	30.0	2.1	10.6	17.4
ME17	Inshore subtidal sessile (Corals, Sponges & Rhodoliths)	5	3.7	6.0	18.3	30.0	2.3	9.9	16.2
ME1	Rocky intertidal	5	3.0	6.0	15.0	30.0	1.8	9.6	19.2
ME16	Inshore subtidal sessile (Corals, Sponges & Coralline Crustose Algae)	5	3.5	6.0	17.5	30.0	2.3	9.5	16.2
ME4	Basalt boulder beach - e.g. Woongarra	5	3.0	6.0	15.0	30.0	2.0	9.0	18.0
ME5	Salt pan	5	3.3	6.0	16.7	30.0	2.4	8.7	15.6
ME6	Intertidal Seagrass	5	2.8	6.0	14.2	30.0	2.0	8.5	18.0
ME2	Sandy beach	5	2.8	5.0	14.2	25.0	2.1	8.2	14.5
ME7	Salt Marsh	5	3.0	6.0	15.0	30.0	2.4	7.8	15.6
ME18	Offshore subtidal sessile	5	3.5	6.0	17.5	30.0	3.0	7.0	12.0
ME3	Mud or Sand flat	5	2.3	3.0	11.7	15.0	2.4	6.1	7.8
ME11	Sandy bottom	5	2.3	3.0	11.7	15.0	2.5	5.8	7.5
ME13	Pebbly bottom (includes gravel)	5	2.7	6.0	13.3	30.0	3.0	5.3	12.0
ME10	Subtidal platform	5	2.2	3.0	10.8	15.0	2.6	5.2	7.2
ME12	Muddy bottom	5	2.2	3.0	10.8	15.0	2.6	5.2	7.2
ME14	Subtidal Seagrass	5	2.2	3.0	10.8	15.0	2.6	5.2	7.2
	Algae	5	2.2	3.0	10.8	15.0	2.9	4.6	6.3

TABLE 4A: VULNERABILITY ASSESSMENT FOR BURNETT MARY COASTAL, ESTUARINE AND MARINE BENTHIC ASSETS (ORDERED BY AVERAGE VULNERABILITY)

Asset		Exposure	Sensitivity - average	Sensitivity - max	Potential Impact - average	Potential Impact - max	Adaptive capacity	Vulnerability - average	Vulnerability - max
MWG	Hervey Bay	5	4.8	6.0	24.2	30.0	1.8	15.5	19.2
MWF	Round Hill Head to Elliott Heads	5	4.0	3.0	20.0	15.0	2.4	10.4	7.8
MWC	Colosseum-Rodds-Bustard Head-south to Roundhill Head	5	4.0	3.0	20.0	15.0	3.0	8.0	6.0
MWH	Breaksea Spit to NSW Border	5	2.8	2.0	14.2	10.0	2.6	6.8	4.8
MWE	Capricorn Bunker group	5	2.8	2.0	14.2	10.0	3.2	5.1	3.6
MWD	Capricorn Channel inter-reefal area	5	2.8	2.0	14.2	10.0	3.4	4.5	3.2

TABLE 4B: VULNERABILITY ASSESSMENT FOR BURNETT MARY COASTAL, ESTUARINE AND MARINE WATER TYPES

From these, we can surmise that the top ranking assets could be considered more vulnerable to the implications of Climate Change. What is notable is the number of highly ranked assets – both benthic and water types. Given their proximity and exposure to such a large number of potential impacts, this is not surprising.

Of the benthic assets, those most vulnerable include mangroves, intertidal sessile (corals and sponges), inshore subtidal sessile (coral, sponges, coralline crustose algae and rhodoliths), intertidal rocky, basalt boulder and sandy foreshores, salt pan, seagrass and saltmarsh. Productivity is generally driven by the salt marsh, mangroves and seagrass tidal wetlands – all of which are highly vulnerable. Those considered least vulnerable were algae. As the region is located in the sub-tropics, it is not characterised by persistent macro algae beds, like the kelp forests of the temperate zone, with both temporal and spatial variation in algae including Sargassum and red macro-algae – these will still shift with increases in temperature.

For the water types, Hervey Bay (or more specifically the marine waters of Hervey Bay / Great Sandy Strait) were the most vulnerable coastal and marine asset in the Burnett Mary region. This is of concern as this water type supports the Great Sandy Strait Ramsar wetland and is intrinsically linked to many of the tidal wetlands listed above and their associated species (including *Environmental Protection and Biodiversity Conservation Act 1999* listed migratory and resident shorebirds, dugongs, Australian humpback dolphins, turtles and sea snakes).

For all actions, these assets should be considered a high priority to maintain healthy and resilient coastal, estuarine and marine ecosystems.

5.4.4 ESTUARINE AND MARINE ECOSYSTEMS VISION, TARGETS & DESIRED OUTCOMES

The visions and targets listed in the NRM Plan are non-statutory. They seek to achieve and align with long-term sustainability outcomes and principles referred to in the Wide Bay Burnett, Central Queensland and South East Queensland Regional Plan's and other relevant State and Commonwealth Plans.

The indicative Vision, 2020 Target and Desired Outcomes for the Estuarine and Marine Ecosystem Assets are summarised below.

ASSET	VISION 2031	2020 Target Theme	TARGET	rs 2020
COASTAL,	Coastal, estuarine and	Physical and	CM1	Critical ecological connections (interactions) and processes are identified by 2020 (e.g. food webs etc.).
ESTUARINE &	marine resources and	Biological Processes		That surface water and groundwater flows are measured and maintain ecological connections that
MARINE	their processes:		CM2	underpin coastal values by 2020.
ECOSYSTEMS	 are healthy and 			That geomorphological processes (including riverine and shoreline) maintain or restore sediment
	resilient		CM3	transport that sustains beaches and coastal dunes by 2020.
	 are appreciated for 			
	their value and			Significant coastal dunes are those considered to be a system or landform that has a high degree of
	vulnerability to			ecological integrity and biodiversity conservation value (and satisfies a number of criteria as defined in
	changes in climate			the M&E strategy).
	and human activity	Coastal, Estuarine	CM4	That by 2020, the extent of all coastal, estuarine and marine benthic habitats will be mapped and a
	• underpin our	and Marine		baseline created.
	community's	Habitats	CM5	That by 2020, the function and value of all coastal, estuarine and marine benthic habitats are improved
	industries and			or maintained. [=condition]
	lifestyles.		CM6	There is no net loss of the extent of natural wetlands.
	·		CM7	There is an improvement in the ecological processes and environmental values of natural wetlands.
		Coastal, Estuarine	CM8	That by 2020, there is no adverse change in biological diversity in coastal, estuarine and marine
		and Marine Plants		species.
		& Animals		
				Given climate change, there will be dramatic changes to the region's coastal, estuarine and marine
				ecosystems. This will lead to the inevitable loss of some species and potential gains in species from
				outside the region. By supporting resilient ecosystems, the term 'no adverse change' means that
				biological diversity is maintained to support ecological processes and ecosystem services.
		Water quality	CM9	That by 2020, actions as identified in the Burnett Mary Water Quality Improvement Plan* are
				implemented to achieve water quality targets to maintain coastal, estuarine and marine ecosystem
				health.

Physical and Biological Processes

CM1 – Critical ecological connections (interactions) and processes are identified by 2020 (e.g. food webs etc.).

CM2 – That surface water and groundwater flows are measured and maintain ecological connections that underpin coastal values by 2020.

CM3 – That geomorphological processes (including riverine and shoreline) maintain or restore sediment transport that sustains beaches and coastal dunes* by 2020.

The Wide Bay Burnett coast contains some of the most diverse shorelines in Australia. Some shorelines are exposed to oceanic swells whereas others are protected resulting in muddier shores. The region contains stretches of exposed sandy beaches such as Fraser Island and at Double Island Point, several estuarine systems such as the Great Sandy Strait, a diverse range of rivers and creeks such as the Mary and Burnett rivers, Baffle and Theodolite creeks, and coral cay islands such as Lady Elliot and Lady Musgrave Islands.

Coastal and ocean processes involve the movement of water, sediment, plants and animals caused by wind, wave and currents, between rivers, the shoreline and the open ocean. The Wide Bay Burnett region's shoreline (or coastline) is constantly changing as a consequence of coastal ocean processes that occur naturally (through erosion or accretion), but are also accelerated through the combined effects of coastal hazards (storm and tidal flooding), coastal development (removal of coastal and marine habitats) and climate change.

Coastal development in erosion prone areas (areas that have a determined vulnerability) alters natural wave, current and sediment transport patterns, resulting in increased erosion or accretion. Inappropriate placement of new coastal development in erosion prone areas poses social, economic and environmental consequences and costs. This results in the loss of shorelines, habitats and places development is at risk of loss or damage. Man-made protection structures such as seawalls, groynes, or activities such as excavation, extractive industries, dredging, marine infrastructure or beach nourishment may also disrupt natural coastal processes and impact on coastal and marine habitats.

In addition, climate change is expected to make the Wide Bay Burnett region's dune systems, wetlands and low-lying estuarine systems more vulnerable to storms, floods and drought. Sea level rise is expected to inundate low lying areas and alter wetland type, extent and condition.

Maintaining critical areas free of development within erosion prone areas and along tidal waterways and ensuring that our coastal and marine habitats are buffered from development will allow for natural coastal processes to occur, reducing or perhaps negating the need to protect property and life. After all, our natural coastal and marine habitats (such as sand dunes and wetlands) are like our kidneys -filtering agents that provide coastal protection, and reduce the impacts of coastal flooding.

Any impacts associated with development and climate change need to be monitored on an ongoing basis to determine their status and any possible mitigation measures required for their protection. The *Coastal Protection and Management Act 1995* identifies erosion prone areas and the coastal management district where these coastal processes occur.

The Queensland Herbarium is responsible for recording and publishing the extent and type of wetlands. This baseline information and mapping service will be integrated into extent assessment and monitoring activities. The Queensland Wetlands Program provides tools for wetland buffer planning and assessment. These tools will be used in integrated wetland planning and assessment processes.

Increases in the frequency and intensity of climatic events – particularly cyclones – will lead to increases in coastal erosion, while sea level rise reduces coastal accretion, resulting in less sand build–up along our foreshores. Both have implications for adjacent natural and built infrastructure.

Coastal, Estuarine and Marine Habitats

CM4 – That by 2020, the extent of all coastal, estuarine and marine benthic habitats will be known and a baseline created.

CM5 – That by 2020, the function and value of all coastal, estuarine and marine benthic habitats are improved or maintained. [=condition]

CM6 – There is no net loss of the extent of natural wetlands.

Coastal, estuarine and marine habitats of the Wide Bay Burnett lie between the well-known Moreton Bay and Great Barrier Reef. But, in comparison, very little is known about our region's habitats, diversity, health and connectivity. Gaining a baseline level of knowledge about all the habitats in the region is the first step before ecological health and connectivity can be assessed. Several types of connectivity that are important for the natural function of marine habitats are a result of aquatic flows between catchments and reefs. These flows transport chemicals, nutrients, sediments, plants and animals between aquatic habitats and their qualities or condition affect:

- Land and Sea (east-west) connections between estuarine and marine habitats. For example, the
 importance and ability of coastal dunes and wetlands to filter nutrients, sediments and
 chemicals from water from urban, industrial and agricultural activities, before entering inshore
 marine habitats such as seagrass and coral reefs.
- North-south connections in the Wide Bay Burnett associated with ocean and nearshore currents, and between the seafloor and top of the water column. For example, the currents between the Great Barrier Reef and Great Sandy Strait Ramsar area.
- The reliance of species on different habitats for different parts of their lifecycle. For example, mullet rely on freshwater rivers and the open ocean at different stages of growth and development.

Ultimately, unhealthy and disconnected habitats in the region will mean there will be a reduction in recreational enjoyment and economic productivity. Therefore, knowledge about the coastal, estuarine and marine habitats of the region, how they are connected and what state they are in, is imperative to the community and its lifestyle and will assist in its future management.

Increasing air temperatures will impact on intertidal wetlands – leading to desiccation, while increases in sea temperatures will lead to higher incidences of coral bleaching events (and ultimately the collapse of coral reefs). Greater air and sea temperatures place greater physiological stress on plants and animals living in intertidal habitats, such as on rock platforms and in wetlands. These

animals are part of the critical ecological functioning of these habitats. Plants and animals under increased stress from climate change are less able to resist and recover from other perturbations, such as pollution and eutrophication, introduced pests and physical disturbances.

Coastal, Estuarine and Marine Plants and Animals

CM8 - That by 2020, there is no adverse change in biological diversity in coastal, estuarine and marine species.

The Wide Bay Burnett region has an international, national and state obligation to protect many of its plants and animals, their populations and habitats, and to maintain the ecosystems upon which they rely.

There are many species that are considered significant for a variety of reasons including those that are iconic or valued by the community, or in need of conservation because they are considered endangered, vulnerable or near-threatened. Others species are used to measure environmental health or economic importance and are considered significant indicators.

Whales, dolphins and turtles in the region for example, are considered iconic and important both culturally and economically. They have become significant for tourism activities in some coastal areas (like humpback whales), and have totemic value to traditional owners such as the Butchulla people. Dugongs are also considered iconic and a conservation significant species as they are classified as vulnerable under Queensland Government legislation and are identified as a critical priority under the Back on Track species prioritisation framework. Healthy dugongs and green turtles require healthy seagrass meadows in which to forage. Many economically significant fishery species are also reliant on seagrass meadows, but also the mangroves and near-shore reefs. Coral reef fish in particular are keystone species with an essential links to and indicators of reef condition. These habitats play a vital role in ecosystem health and the presence and location of many plants and animals in the region.

Better information is needed in the region about significant species, their populations, habitat requirements and key life cycles –that is, where they spawn, spend their adult life and their movement (or connectivity) between these. Monitoring other species considered indicators (reflecting habitat health) or keystone (reflecting roles in an ecosystem, and ecosystem health or resilience) is also required. It is important to gain more knowledge about human interactions with significant species, through activities such as fisheries, tourism, resource and coastal planning, and the implications this may have for the region's coastal, estuarine and marine habitats. (For example, marine pests are plants and animals that potentially impact on marine habitats and resources.) This will allow us to have a greater understanding about the region's significant species, their population numbers, extent and connectivity to the landscape and seascape into the future.

It should also be noted that within the context of the climate change scenarios, that ocean currents are expected to intensify and this will have implications for the spread of species (including invasive species). Ocean acidification will also impact on fish larvae, molluscs, crustaceans, corals and plankton which will impact on food webs and fisheries productivity.

Water Quality

CM9 – That by 2020, actions as identified in the Burnett Mary Water Quality Improvement Plan* are implemented to achieve water quality targets to maintain coastal, estuarine and marine ecosystem health.

Water quality of the Wide Bay Burnett region is affected by discharge (from an identifiable location) or runoff from either surface or groundwater. Sediments, nutrients and chemicals are suspended in the water column and enter the estuarine and marine environment (the receiving waters of catchments) from major coastal streams like the Burnett, Mary and Burrum Rivers.

At the mouths of the catchments are the coastal habitats such as seagrass meadows, coral reefs, and mangroves (and includes the southern portion of the Great Barrier Reef lagoon, which receives their flood waters). These habitats depend on good water quality to be healthy and in turn supply essential habitat and food to many plants and animals. Some actions (e.g. the Reef Plan on-ground works through BMRG and MRCCC) have started to address these issues; but require local monitoring of the coastal habitats to determine their effectiveness.

Valuing water quality services and having a healthy coastal, estuarine and marine ecosystem has been recognised as important to the Wide Bay Burnett community especially for human health. What is regularly and traditionally measured for water quality are physio-chemical indicators such as dissolved oxygen, pH, temperature, salinity and nutrients (nitrogen and phosphorus). These water quality indicators provide information about what is impacting on the ecosystem.

In contrast, biological water quality indicators such as algae, fish species or crab burrows are intended to measure the health of the plants and animals and the habitats on which they rely, which may provide a broader picture of ecosystem condition.

Changing land management practices, improving or maintaining healthy vegetation along waterways and addressing water use in urban and agricultural development can have positive outcomes for the quality of coastal and marine waters and for our sustained consumption and enjoyment of the Wide Bay Burnett region.

The impacts of dramatic climatic events such as cyclones and flooding have a considerable impact on coastal water quality leading to increased runoff of sediment and a corresponding increase in turbidity.

5.4.6 INVESTMENT STRATEGY

We need to take action to reduce risks and threats and improve biophysical condition. However, we also need to improve policy and planning, awareness and behaviour, adoption of improved management practices and improve the region's understanding and knowledge of natural systems and the interaction of human activities on those systems. All of these activities have one thing in common, which is the need for investment of resources - both people and funding.

To follow are the specific activities identified for the delivery of outcomes for the Coastal, Estuarine and Marine Assets as identified through Community Consultation and Scientific Expert Panels. The activities were identified for addressing key issues for the Priority Assets of the Estuarine and Marine Ecosystems Asset Group and were subject to a prioritisation process examining:

- Cost
- Benefit
- Risk
- Barriers to Adoption
- Social Acceptability
- Carbon Sequestration Potential
- Maladaptation

Priorities have been ranked from 1 to 3, where 1 is high, 2 moderate and 3 low.

2020 Targets	Desired Outcomes	Activity Category	Activity	Priority Ranking	Climate change adaptation or mitigation co-benefit
CM1 – Critical ecological connections (interactions) and processes are identified	Critical ecological connections – such as food webs and habitat	Planning & Governance	CM1.1 Provide best-available advice to all planning processes that potentially impact the ecological connectivity of terrestrial and marine environments.	1	Coastal, estuarine and marine connectivity will support greater resilience
by 2020 (e.g. food webs etc.).	mosaics are understood, informing future prioritisation and	On-Ground	CM1.2 Support actions to protect, maintain or restore coastal, estuarine and marine ecological connectivity; including those with links to freshwater and terrestrial programs.	1	to climate change and movement of species enabling species spread
	delivery.	Community Capacity Building	CM1.3 Create "it's all connected" education tools (e.g. website, guidelines, brochures, DVDs, YouTube, videos) explaining ecological connectivity, its significance for where and how we live and regional economic implications viz. tourism, fisheries productivity, natural hazard reduction etc.	2	and migration. Healthy tidal wetlands (saltmarshes, mangroves and seagrass) store 'blue
			CM1.4 Highlight the importance of connectivity through education programs such as Marvellous Mangroves and Shorebird activities.	3	carbon' mitigating greenhouse gas
		Science	CM1.5 Review current knowledge to build a conceptual model of ecological connectivity in the coastal, estuarine and marine systems of the Burnett Mary (including identification and prioritisation of knowledge gaps)	1	emissions.
			CM1.6 Prioritise and implement research activities to address knowledge gaps	2	
CM2 – That surface water and groundwater flows are measured and maintain ecological connections that	Of these critical ecological connections, surface and ground water flows maintain ecological connectivity and coastal values such as seagrass production.	Planning & Governance	CM2.1 Provide best-available advice to planning and policy reviews related to the management of surface and ground waters, emphasising the significance of surface and ground water flows to maintaining coastal ecological values.	ecosystems such a	Groundwater dependent ecosystems such as some riparian vegetation and tidal wetlands (for
underpin coastal values by 2020.		On-Ground	CM2.2 Design and deliver innovative programs that restore surface and groundwater flows in areas where such flows have declined due to irrigation or other "take." (Links to rural water use efficiency and irrigation efficiency programs)	1	example seagrass beds) are maintained, increasing resilience to climate change and
		Community Capacity Building	CM2.3 Create "it's all connected" education tools (e.g. website, guidelines, brochures, DVDs, YouTube, videos) explaining ecological connectivity, its significance for where and how we live and regional economic implications viz. tourism, fisheries productivity, natural hazard reduction etc.	2	maintaining carbon storage capacity.
		Science	CM2.4 Compile existing data sets to identify current surface flows and establish baselines to maintain ecological connectivity.	1	
			CM2.5 Address data gaps, principally groundwater flows, to establish baseline flows required to maintain ecological connectivity.	2	

CM3 – That geomorphological processes (including riverine and shoreline) maintain or restore sediment transport	Reduction of development (or coastal retreat) will enable greater adaptation to sea level rise and natural	Planning & Governance	CM3.1 Facilitate information sharing to ensure that planning schemes, new or revised erosion management plans and strategic plans for development in marine areas recognise the importance of maintaining coastal processes, including maintaining sediment transport regimes.	1	Enabling the efficient and natural movement of sand enables coastal accretion and reduces the impacts of sea level rise
that sustains beaches and coastal dunes by 2020.	adaptation of coastal ecosystems and less impacts to built infrastructure /		CM3.2 Develop guidelines for use by local government and the general community that identify threats to biodiversity, life and property in the coastal zone; reflecting current scientific, economic and legal information.	1	and severe coastal erosion during dramatic climatic events e.g. cyclones. Beaches are also
	development. Sand movement (sand budget, imports and		CM3.3 Review the location and legal standing of existing structures in tidal waterways (e.g. boat ramps or other private and public maritime infrastructure) and coastal developments on significant coastal dunes to inform future planning / management strategies.	2	a natural buffer protecting natural and built infrastructure.
	exports) is maintained resulting in stable	On-Ground	CM3.4 Approve, modify or remove unlawful structures in tidal wetlands and on significant coastal dunes.	2	As sea level rises, beaches and tidal wetlands will try
	beaches. The natural extent and	Community Capacity Building	CM3.5 Provide training for local and state government planners on the statutory requirements (and options) for maintaining coastal ocean processes in development assessment and planning.	1	to migrate landward. If there are no buffers between these systems
	dynamics of coastal beaches and tidal wetlands is maintained resulting in a stable natural environment able to limit flood discharge		CM3.6 Create education tools (e.gwebsite, guidelines, brochures, DVDs, YouTube, videos) that explain the importance of: - coastal ocean processes and the effects/risks of altering the natural coastal environment - retaining tidal wetlands and coastal dunes and allowing natural coastal processes to occur.	2	and built infrastructure, these ecosystems will be lost – reducing habitat, fisheries productivity and impacting the economy through recreational and
	and support diverse populations and ecosystems that maintain	Science	CM3.7 Coordinate and integrate the existing local science regarding coastal ocean processes (e.g. climate change, hazards, oceanography and sand movement).	1	commercial fishing and tourism.
	coastal and marine		CM3.8 Coordinate and integrate intertidal and contour data.	2	
	ecosystem services (e.g. fisheries).		CM3.9 Undertake a sediment volume study (Beach Protection Authority) to enable better understanding of regional sediment composition over time (palaeo-sedimentology).	2	
			CM3.10 Establish the baselines required for monitoring (e.g. significant coastal dunes, tidal wetlands, and undeveloped tidal waterways) and seek community involvement and support.	1	
			CM3.11 Seek ownership and involvement from the greater community to undertake coastal monitoring programs (This may require the development of new citizen science programs Dune Watch).	2	
CM4 – That by 2020, the extent of all coastal,	Maintaining the extent of our tidal wetlands is key	Planning & Governance	CM4.1 Provide best-available advice to planning and development processes that potentially impact on coastal, estuarine and benthic	1	Tidal wetlands sequester carbon faster and in

estuarine and marine	to providing both		habitats (and their buffers) with provision for climate change (2050		greater quantities than
benthic habitats will be	ecological processing		horizon).		land-based systems (this
mapped and a baseline	capacity and habitat to	On-Ground	CM4.2 Support actions to protect, maintain or restore key coastal,	1	is sometime referred to as
created.	maintain biodiversity and		estuarine (and marine) habitat sites where feasible (given		blue carbon). Mangroves
	fisheries values of the		constraints such as sea level rise). For example through the		and saltmarsh can
	region.		installation of seagrass friendly moorings to protect habitat.		sequester 6-8 tonnes of
		Community	CM4.3 Promote key messages that reinforce the value of coastal,	2	CO2/Ha/yr.
		Capacity Building	estuarine and marine habitats to the regional economy through		
			fisheries productivity and tourism e.g. No habitat, no fish.		Tidal wetlands support
			CM4.4 Highlight the importance of coastal, estuarine and marine	3	fisheries and tourism,
			habitats through education programs such as Marvellous		reduce the run-off of
			Mangroves and the Reef Guardian Schools program.		sediments and nutrients
		Science	CM4.5 Classify and map intertidal and subtidal estuarine and marine	1	and act as a physical
			habitats for the region, including groundwater dependence.		buffer protecting
			CM4.6 Coordinate and integrate existing local science on coastal,	1	coastlines (and coastal
			estuarine and marine habitats (including marine water bodies) and		communities) from
			undertake future research.		dramatic climatic events.
			CM4.7 Ground truth mapping and establish baselines for all regional	2	
			estuarine and marine benthic habitats, such as rhodolith and bivalve		
			beds.		
			CM4.8 Identify and prioritise habitats of high ecological significance	1	
			(utilising HES methodology) to inform policy, planning and		
			management outcomes.		
			CM4.9 Align terrestrial and aquatic connectivity methodology and	1	
			processes to the coastal, estuarine and marine environment.		
			CM4.10 Develop regionally specific conceptual models to increase	1	
			the understanding of ecosystem processes and services of habitats.		
			CM4.11 Seek ownership and involvement from the greater	2	
			community to undertake monitoring programs e.g. Seagrass Watch,		
			Mangrove Watch, Reef Check.		
			CM4.12 Assess buffer implementation within or adjacent to riparian	1	
			areas, tidal wetlands and significant coastal dunes.		
CM5 – That by 2020, the	Although we have some	Planning &	CM5.1 Provide the best available science and technical advice to	1	While the role of coral,
function and value of all	information about key	Governance	planning and policy reviews to ensure the function and value of		seagrass, mangroves and
coastal, estuarine and	habitats such as		estuarine and marine habitats continue to be recognised and are		salt marsh in carbon
marine benthic habitats are	saltmarsh, mangroves,		improved or maintained through future planning and policy		sequestration are well
improved or maintained.	seagrass and coral		initiatives.		established, there has
[=condition]	habitat our knowledge	On-Ground	CM5.2 Support community and other initiatives that undertake	1	been little research on
	regarding extent is		coastal and estuarine habitat protection, rehabilitation and		some of our less common
	incomplete or outdated		restoration e.g. saltmarsh fencing, mangrove planting, hydrology		habitats – such as

	(>10 years). In order to		restoration, estuarine rehabilitation and urban stormwater quality		rhodoliths and bivalve
	better manage our		improvement/flow reduction, dune fencing and revegetation.		beds.
	benthic habitats we need		CM5.3 Undertake marine debris clean up initiatives	2	
	to classify and map them.	Community	CM5.4 Support community information days through industry,	2	
		Capacity Building	coastal and other care groups to enhance awareness of the function		
			and values of coastal, estuarine and marine habitats to the Burnett		
			Mary region (and the potential risks to these values through Climate		
			Change). E.g. Seafood Festivals.		
			CM5.5 Highlight the function and values of coastal, estuarine and	3	7
			marine habitats through education programs such as Marvellous		
			Mangroves and the Reef Guardian Schools program.		
			CM5.6 Promote the cultural heritage value of coastal and estuarine	3	7
			habitats to Aboriginal people to the wider community through joint		
			initiatives with local Traditional Owner groups.		
		Science	CM5.7 Develop regionally specific conceptual models to increase	1	
			the understanding of ecosystem processes and services of habitats.		
			CM5.8 Identify and prioritise habitats of high ecological significance	1	7
			(utilising HES methodology) to inform policy, planning and		
			management outcomes.		
			CM5.9 Coordinate and integrate existing local science on coastal,	2	7
			estuarine and marine habitats (including water) and undertake		
			further research.		
CM6 – There is no net loss of		Planning &	CM6.1 Provide best-available advice to planning and development	1	Tidal wetlands sequester
the extent of natural		Governance	processes that potentially impact on natural wetlands (and their		carbon faster and in
wetlands.			buffers) with provision for climate change (2050 horizon).		greater quantities than
		On-Ground	CM6.2 Provide incentives, or other extension services, for lower	1	land-based systems (this
			impact land uses, best management practices technical support and		is sometime referred to as
			education (particularly for agricultural practices in tidal wetlands)		blue carbon). Mangroves
			CM6.3 Undertake riparian restoration and promote buffer	1	and saltmarsh can
			implementation, particularly adjacent to forested areas.		sequester 6-8 tonnes of
			CM6.4 Support tidal wetland fencing and removal of stock from	1	CO2/Ha/yr.
			sensitive tidal wetlands.		
		Community	CM6.5 Foster lower impact land uses and provide best management	1	Tidal wetlands support
		Capacity Building	practices technical support and education to managers of land uses		fisheries and tourism,
			in tidal wetlands.		reduce the run-off of
			CM6.6 Highlight the importance of natural wetlands through	3	sediments and nutrients
			education programs such as Marvellous Mangroves and the Reef		and act as a physical
			Guardian Schools program.		buffer protecting
		Science	CM6.7 Coordinate and integrate existing data sets regarding the	1	coastlines (and coastal
			extent of natural coastal, estuarine and marine wetlands		communities) from

			CM6.8 Classify and map all natural wetland habitats in the Burnett Mary region to establish baseline extent mapping.	1	dramatic climatic events.
			CM6.9 Prioritise and implement research activities to address knowledge gaps.	2	Natural wetlands remove sediment and nutrients
			CM6.10 Establish the baselines required for natural wetland extent monitoring and seek community involvement and support.	1	from surface water increasing the resilience of inshore marine ecosystems such as seagrass beds and coral reefs.
CM7 – There is an improvement in the ecological processes and		On-Ground	CM7.1 Provide incentives, or other extension services, for lower impact land uses, best management practices technical support and education (particularly for agricultural practices in tidal wetlands).	1	Water quality improvement and hydrological connectivity
environmental values of natural wetlands.			CM7.2 Expand and implement the biopassage strategy in the region.	1	will increase the resilience of coastal, estuarine and marine species.
CM8 - That by 2020, there is no adverse change in biological diversity in	EPBC and NCA Act listed species deserve the highest level of protection and conservation. Actions should contribute to the conservation and	the Governance	CM8.1 Influence planning and development processes to consider development impacts on marine resources, particularly species' vulnerabilities associated with life cycle changes and migration.	1	While some marine species may have a small role to play in the fixing of
coastal, estuarine and marine species.			CM8.2 Use the Queensland Coastal Plan and other instruments to inform local and state government planners of the statutory requirements for maintaining species extent and connectivity in planning and development assessment.	1	carbon – such as hard corals and sea cucumbers, many EPBC and NCA Act listed species are highly
	recovery of these species (where feasible).	On-Ground	CM8.3 Implement actions from Species Recovery Plans to improve outcomes for species of conservation significance.	1	susceptible to the impacts of climate change through
			CM8.4 Encourage adoption of "best practice" by commercial and recreational fishers and marine tourism operators.	1	reduced habitat, food availability and less
			CM8.5 Promote viable land and marine based aquaculture that is appropriately located and does not impact on natural habitats or species.	3	optimal conditions for their life cycles (for example increased sand
			CM8.6 Increase compliance and enforcement of existing regulations.	1	temperature will impact on turtle hatchling
			CM8.7 Support the development and implementation of Traditional Use of Marine Resource Agreements (TUMRAs) to assist in species management delivery.	2	success). Climate change mitigation
			CM8.8 Restore habitat connectivity and riparian catchment condition to enhance species resilience and natural life cycle processes.	1	will have a positive impact on key species.
		Community Capacity Building	CM8.9 Support community information days through industry, coastal and other care groups to enhance awareness of coastal,	2	

			estuarine and marine biodiversity and its significance to the Burnett Mary region through fisheries productivity and tourism (and potential risks to species through Climate Change).		
			CM8.10 Highlight the unique biodiversity values of the Burnett Mary region (and threats to these species) through targeted education programs and campaigns e.g. shorebirds, Marvellous Mangroves and the Reef Guardian Schools program.	3	
		Science	CM8.11 Establish a list of scheduled and significant local species (plants and animals of ecological, economic, conservation or iconic value), considering the Back on Track prioritisation process, to target research funding opportunities.	1	
			CM8.12 Model and map species habitats including climate change predictions.	1	
			CM8.13 Establish a baseline of presence and extent for significant species and fisheries population.	1	
			CM8.14 Conduct social and economic studies of services provided by significant species and fisheries	1	
			CM8.15 Seek ownership and involvement from the greater community to undertake monitoring programs e.g. Queensland Turtle Research program, or by Coastcare and universities, and promote involvement in species incidence reporting.	2	
			CM8.16 Identify keystone or indicator species for habitat condition and health.	1	
			CM8.17 Identify where negative interactions with species exist and develop management responses to reduce these risks.	1	
CM9: That by 2020, actions as identified in the Burnett Mary Water Quality Improvement Plan* are implemented to achieve water quality targets to maintain coastal, estuarine and marine ecosystem health.	Improved water quality entering the coastal and marine environments (including healthier seagrass meadows and reef). Improved catchment retention of nutrients, sediments, chemicals etc. (through appropriate urban and rural land use), resulting	Planning & Governance	 CM9.1 Support moves to amend Queensland Government legislation to: amend the Water Act to allow for marine water quality standards to be addressed in Water Resource Plans integrate the Queensland Coastal Plan with Environmental Protection Policy (Water) and Water Quality Improvement Plans, in relation to coastal development revise and reschedule WQIP Ecological Values and Water Quality Objectives e.g. pursue accreditation of the Baffle-Burnett WQIP as a Healthy Waters Management Plan under the Environmental Protection Policy (Water). 	1	Water quality will decline under climate change scenarios becoming warmer, more acidic and more turbid (as a result of an increasing frequency of dramatic climatic events and run-off) and more saline in closed embayments such as Hervey Bay.
	in less algal blooms and reduced impacts to the	On-Ground	CM 9.2 Coordinate activities across agencies and the community to implement Water Quality Improvement Plans.	1	Improving water quality
	marine environment.		CM9.3 Provide education and technical support, as required, and incentives to encourage industry adoption of best management	1	will have a net benefit to tidal wetland habitats,

	practice that improves water quality.		significant species an
	CM9.4 Retain, enhance and restore vegetated filters / buffers that	1	fisheries both in the Grea
	are capable of improving water quality.		Sandy Strait and adjacer
Community	CM9.5 Implement the education and monitoring components of the	1	Great Barrier Reef lagoor
Capacity Building	Wide Bay Burnett Healthy Waterways Strategy.		
	CM9.6 Increase awareness of the unaccounted costs of poor water	1	
	quality on assets e.g. reduced prawn fishery production, economic		
	losses in the ecotourism sector as a consequence of seagrass loss		
	due to increased sediment inflow.		
Science	CM9.7 Undertake event monitoring and remote sensing of receiving	1	
	waters and link to habitat condition monitoring.		
	CM9.8 Gain better understanding of groundwater processes, acid	1	
	sulfate soils and pollution studies and link findings to land		
	management activities.		
	CM9.9 Establish nutrient hazardous coastal land mapping (as per	1	
	State Planning Policy (Healthy Waters))		
	CM9.10 Model sediments and nutrients coming from the Mary River	1	
	(including the cumulative effects).		
	CM9.11 Maintain (and extend) EHP's ambient water quality	2	
	monitoring. Extend to target biological indicators of water quality		
	such as seagrass meadows, corals, scribbled angelfish, mud crabs		
	and crab holes.		_
	CM9.12 Establish better mapping products for biological indicators	2	
	including tidal wetlands, riparian and foreshore vegetation, and link		
	to management outcomes/practices.		
	CM9.13 Gain better understanding of the total water cycle	2	
	management for the Wide Bay Burnett region e.g. the catchment		
	sources of sediment, pesticides, pine discharge and path in		
	receiving waters.		
	CM9.14 Provide support to (and standardise) community groups'	2	
	monitoring programs for total water cycle management (i.e. water		
	quality, habitat protection, vegetation filter restoration,) and		
	integrate into regional planning/management.		

5.4.7 MONITORING & EVALUATION OF THE ESTUARINE AND MARINE ECOSYSTEM ASSETS

The NRM Plan provides an opportunity to coordinate the region's effort towards monitoring the state of the environment and the health and condition of our natural resources. We need both monitoring systems and an evaluation process to get a true picture of how we are tracking.

Monitoring systems are about 'measurements' and aim to tell us something the state or condition of an asset. Monitoring is generally about data collection, analysis and interpretation and uses indicators that tell us something about the important asset. The indicators are a particular aspect of an environmental asset we can measure over time. When we combine these measurements with a good understanding of how an environmental systems works we are able to assess the condition and identify any trends associated with an asset.

Evaluation tells us about the effectiveness of what we have been doing and if we have achieved the results and outcomes we are looking for from our activities. Evaluation is based on having a good understanding of the 'cause and effect' relationship between the actions we undertake and the variety of outcomes and changes we hope to see along the way to achieving our targets.

The following information details the Monitoring and Evaluation Framework for this Asset Group.

MONITORING & EVALUATION FRAMEWORK

The following Table outlines the methods proposed to monitor our progress towards the achievement of our targets. In many cases Baseline data does not exist and is the first action necessary to complete to establish an operable monitoring program.

Target	Indicators	Data Availability	Comments
		(Y / N) Comments	
CM1 – Critical ecological connections (interactions) and processes are identified by 2020 (e.g. food webs etc.).	Conceptual model of ecological connectivity in the coastal, estuarine and marine systems of the Burnett Mary (including identification and prioritisation of knowledge gaps) completed Knowledge is being applied to planning and other decision making processes to reduce impacts to the ecological connectivity of terrestrial and marine environments.	Y/N • There is a considerable amount of data and knowledge in the public domain but not all ecological connections have been formally recognised. E.g. Why is population decline for shorebird in the Great Sandy Strait lower than national trends?	 This target can be evaluated through the following processes: Completion and publishing (knowledge dissemination) of the conceptual model Uptake of knowledge and incorporation into key plans / decision making processes at an appropriate scale. [This could be undertaken through a survey of key partners]. Prioritisation and implementation of research to address knowledge gaps.

CM2 – That surface water and groundwater flows are measured and maintain ecological connections that underpin coastal values by 2020.	That surface and ground water flows are measured and monitored to ensure they meet ecological requirements for coastal values That biological indicators of healthy surface and ground water flows can be established and are incorporated into an ongoing monitoring program e.g.	Y/N	•	While surface water information is available for the region's managed catchments / water resources, information relating to smaller non- impeded coastal catchments and groundwater is limited.	
	Seagrass Watch and data is synthesised and incorporated into resource allocation planning reviews.				

CM3 – That geomorphological	Extent of development along the	Y	Baseline needs development with	The extent of development along the coast/shoreline
processes (including riverine and	coastline/shoreline.		existing datasets:	can be determined by combining the erosion prone
shoreline) maintain or restore				area and undeveloped tidal waterway datasets.
sediment transport that sustains			For erosion prone areas:	
beaches and coastal dunes by				Statutory Erosion prone areas for WBB region are
2020.			Statutory Erosion prone areas 2012	mapped as of 2012, overlaid with current DCDB layer,
			Current DCDB layer 2012	satellite imagery and town planning precincts (current
			Satellite imagery 2012	and future zones) to provide extent of coastal
			• Town planning precincts (current and future zones) date?	development within erosion prone areas.
			Undeveloped tidal waterways (shoreline):	The undeveloped tidal waterway dataset would need to
			ondeveloped tidal water ways (shoreline).	be updated and some attributes added (since the
			Existing 2007 baseline created for the	introduction of the urban footprint in the WBB region,
			draft WBB Regional Coastal Management	for example). The undeveloped tidal waterways map
			Plan (see metadata for further	shows where development along the shore is located,
			information)	and if placed within appropriate urban areas, close to
				infrastructure, and limits loss of tidal wetlands (the
				natural buffers from ocean processes to the coast)
CM4 - That by 2020, the extent of	Extent of tidal wetlands and dunes	Y	Baseline needs review with existing	The extent of tidal wetlands and significant coastal
all coastal, estuarine and marine	affected by ocean processes		datasets:	dunes can be determined by combining the tidal
benthic habitats will be mapped				wetland and coastal dune datasets.
and a baseline created.			For tidal wetlands:	
			Queensland Wetland Data (estuarine	Types of tidal wetlands to be included in the dataset
			component - Version 3, 2012)	are those defined by the estuarine component of the
				Queensland wetland data. Mangrove & Tidal Wetlands
			For significant coastal dunes:	baseline (Mackenzie & Duke, 2010) could be integrated
				into the Regional Ecosystem framework with
			• Existing 2006 baseline created for the	MangroveWatch monitoring to review and evaluate
			draft WBB Regional Coastal	change.
			Management Plan (see metadata for	
			further information)	Significant coastal dunes are those considered to be a
				system or landform that has a high degree of ecological
				integrity and biodiversity conservation value (and

				satisfies a number of criteria as defined in the M&E strategy – (note this definition is taken from the State Coastal Management Plan of 2001)).
CM5 – That by 2020, the function and value of all coastal, estuarine and marine benthic habitats are improved or maintained. [=condition]	Baseline of condition for all coastal, estuarine and marine benthic habitats will need to be established.	Y/N	 Baselines will need to be established with existing datasets with data gaps prioritised and implemented (when funding will allow): Seagrass Watch (JCU ongoing program) Coral (Alquesar & Boyd (2007), Alquezar et al (2011), Mangroves & Tidal Wetlands (Mackenzie & Duke 2010) 	
			Monitoring programs to be implemented at a minimum of every 5 years or on an as needs basis e.g. climatic event.	

CM6 – There is no net loss of the extent of natural wetlands.	Extent of seagrass beds, tidal wetlands, and nearshore coral reef communities	Y/N	 Incomplete existing datasets for each attribute: Seagrass - existing 2002 baseline (but does not take into consideration major changes due to flooding events) and therefore would require updating. (Consider using 2012/2013 baseline currently being developed by the Australian Centre for Ecological Analysis and Synthesis) Tidal wetlands - Queensland Wetland Data (estuarine component - Version 3, 2012) Nearshore coral reef communities – existing 2008 baseline for Hervey Bay corals (see Zann 2012a, b) but scant information available for remaining WBB region. 	There are limited marine datasets available for the WBB region. A program has been established to classify and map estuarine and marine habitats of the Wide Bay region by 2013 (Queensland Wetlands Program Project) and will include a number of other estuarine and marine habitats for future indicators. Types of tidal wetlands to be included in the dataset are those defined by the estuarine component of the Queensland wetland data. MangroveWatch baseline is as 2010 and could be integrated into the Regional Ecosystem framework. The nearshore coral reef community baseline could be developed based on a number published reports and data including Beger study (2010), Butler (2012 in draft), DeVantier (2010), Alquezar & Boyd (2007), Alquezar et al (2011), Bleachwatch report, Bennett (2004), Thorogood (1993), RHIS surveys (Parks).
CM7 – There is an improvement in the ecological processes and environmental values of natural wetlands.			•	
CM8 - That by 2020, there is no adverse change in biological diversity in coastal, estuarine and marine species.	Known population and extent of Indo- pacific humpback dolphin, dugong, turtles, shorebirds, water mouse and grey nurse sharks	Y and N	 CEM4 – Incomplete existing datasets for each attribute: Indo-pacific humpback dolphin Known population baseline (2007), see Cagnazzi report 2006 to BMRG Extent baseline 2006 created for the draft WBB Regional Coastal Management Plan (see metadata for further information) 	For significant species datasets, also refer to the Great Sandy Marine Park planning process and data collection (refer ex-DERM metadata). There are limited marine species datasets available for the WBB region, particularly the mapping of their extent. Known populations are based on taggings (mark and recapture), sightings including photoID etc. Extent is based on either feeding, roosting/nesting, resting

	 Dugong Known population baseline unknown? Extent baseline (2007, 2010) based on a relative density grid provided by Helene Marsh (see metadata for further information) Turtle Known population baseline (unknown)? Extent baseline (unknown) but could be developed based on Col Limpus database, tagging project, and Go-slow project Shorebirds Known populations baseline (2007) based on the Queensland Wader Study Group surveys Extent baseline (2007) for roosts and habitats created for the draft WBB Regional Coastal Management Plan (see metadata for further information) Water mouse Known population baseline (unknown)? Extent baseline (2006) created for the draft WBB Regional Coastal Management Plan (see metadata for further information) Water mouse Known population baseline (unknown)? Extent baseline (2006) created for the draft WBB Regional Coastal Management Plan (see metadata for further information) Grey nurse shark Known population baseline (2011) (cited in Bansemer (2009) and Bansemer and Bennett (2011)) 	sites. A number of datasets are needed to be updated or created from a variety of data sources and attributes. There are a number of community groups involved in monitoring species within the WBB region and data could be further integrated into the baselines. For example, Coastcare groups are currently monitoring the water mouse at certain locations. Refer CHRIS web on the Agriculture, Fisheries and Farming website for metadata and other data sources.
	for further information) Grey nurse shark Known population baseline (2011) (cited in Bansemer (2009) and 	

	Recreational and commercial wild fisheries stocks of mackerel, prawns, spanner crabs		 Incomplete datasets for each attribute but could be developed using: Commercial fisheries log books Commercial seasonal, bag and size limits Fisheries stock estimates (reviews and reports) Impoundment stock data? Voluntary recreational catch records Fishing club and charter records Reef-check fish monitoring projects CAP-reef Correlate with freshwater flows, flood mapping 	
CM9: That by 2020, actions as identified in the Burnett Mary Water Quality Improvement Plan* are implemented to achieve water quality targets to maintain coastal, estuarine and marine ecosystem health.	CEM9 – Coastal water quality in receiving waters (biological indicators)	Y/N	 Incomplete datasets for each attribute: Chlorophyll a – EHP's ambient WQ monitoring for estuarine. No event information currently. Seagrass - existing 2002 baseline (but does not take into consideration major changes due to flooding events) and therefore would require updating. (Consider using 2012/2013 baseline currently being developed by the Australian Centre for Ecological Analysis and Synthesis) Corals (nearshore coral reef communities) – existing 2008 baseline for Hervey Bay corals (see Zann 2012a, b) but scant information available for remaining WBB region. Scribbled Angelfish – no existing baseline (refer Berger UQ, Zann and Wortel ex-DERM datasets/reports) Mud Crabs and crab holes – no existing baseline (refer Mangrove 	Further work is required to develop the event information for chlorophyll a (using remote sensing and sediment levels etc.) Establishing a baseline for scribbled angelfish and mud crabs/holes is required.

EXPERT PANEL CONTRIBUTORS:

Expert Panel Workshop 1, held 15 August 2014

Kevin Bowden	Burnett Mary Regional Group for NRM
lan Butler	University of Queensland
Norm Duke	James Cook University
Saranne Giudice	Burnett Mary Regional Group for NRM
Matthew Griffith	Queensland Department of Environment and Heritage Protection
Stacey Hodge	Burnett Mary Regional Group for NRM
Rachel Lyons	Burnett Mary Regional Group for NRM
Mike Ronan	Queensland Department of Environment and Heritage Protection
Sue Sargent	Burnett Mary Regional Group for NRM
David Scheltinga	Queensland Water
Kirsten Wortel	Burnett Mary Regional Group for NRM

Expert Panel Workshop 2, held 7 July 2015

0				
Kevin Bowden	Burnett Mary Regional Group for NRM			
lan Butler	University of Queensland			
Norm Duke	James Cook University			
Emma Krusic	Queensland Department of Agriculture and Fisheries			
George Martin	Burnett Mary Regional Group for NRM			
Mike Ronan	Queensland Department of Environment and Heritage Protection			
Sue Sargent	Burnett Mary Regional Group for NRM			
Kirsten Wortel	Burnett Mary Regional Group for NRM			
Maria Zann	Queensland Department of Environment and Heritage Protection			

Additional input was also provided by Dr Greg Skilleter.