## 5.4 Coastal and Marine Assets

## 5.4.1 OVERVIEW - DESCRIPTION AND VALUES

The landscape and oceanic processes of Burnett Mary region has produced a dynamic and diverse coastal, estuarine and marine ecosystem.

The Burnett Mary region lies within the Tweed-Moreton marine bioregion where the landmark Fraser Island (which traps warm waters in Hervey Bay and created the Great Sandy Strait) marks the southern boundary of the Great Barrier Reef lagoon (the largest and most diverse coral reef system in the world). The mix of tropical and subtropical zones characterises the Burnett Mary region meaning it has some of Australia's highest coastal, estuarine and marine biodiversity. This biodiversity underpins environmental, commercial and recreational growth in the Burnett Mary region.

Our diverse range of coastal, estuarine and marine habitats (some of which are protected or conserved under World Heritage or Ramsar listings) include: the deep continental shelf located just off Fraser Island (influenced by the East Australian Current), rocky shores, dunes, coastal and tidal wetlands - mangrove forests, salt marsh and samphire flats (backed by peat swamps), seagrass meadows, coral and other reefs (including GBR's southernmost reef-forming reefs); and soft-bottom habitats. This habitat mosaic has critical connections that enable the movement of water, sediment, plants and animals that are essential for life processes.

The region's plants and animals including significant iconic and migratory species such as shorebirds, grey nurse sharks, humpback whales, dugong, and Indo-Pacific humpback dolphins, rely on healthy and available habitat. Our region contains the east coast's largest dugong population south of Torres Strait and six of the world's seven species of endangered and vulnerable marine turtles. Of these, loggerhead, green and flat-back turtles regularly nest along the region's foreshores. Other significant species have iconic or economic value and sustain our tourist and fishing industries.

Coastal, estuarine and marine habitats are often disturbed, to varying degrees, by natural events such as tides, floods and severe storms. This disturbance is normal, natural and essential for ecosystem health, whereas human-induced pressures can often tip the balance (reducing resilience) and contribute to major loss of biodiversity. Pressures on coastal, estuarine and marine environments include: coastal development, recreational and commercial fisheries, public access, pests and weeds, and upstream land management with associated run-off or environmental and cultural flows.

Management of runoff is critical to minimise sediment, nutrient and pesticide pollution of waterways and estuarine and marine environments. Balancing healthy ecosystems with natural resource use will continue to support our lifestyle and wellbeing and provide a sustainable future for our region.

## 5.4.2 ASSET DELINEATION

The most logical benthic (non-water) asset delineation at the strategic level was a combination of the following classification classes:

- Aquatic Zones
- Dominant Energy Regimes
- Dominant Biotic Structure
- Consolidation Type

This system was designed by the Queensland Wetlands Program (Department of Environment & Heritage Protection) as part of a project entitled: Queensland coastal marine and estuarine habitat classification for enhanced coastal planning and management outcomes.

Marine and estuarine ecosystems are dynamic and influenced by a complex range of environmental variables and undergo cyclic changes at temporal and spatial scales. Both marine and estuarine systems can contain intertidal and subtidal habitats. Intertidal habitat is exposed at low tides and inundated by tides. Subtidal habitat is continuously submerged.

While no two estuarine or marine habitats are entirely the same, many function in similar ways. A comprehensive classification of habitats into ecologically relevant groups that share similar ecological and physical drivers, is essential for effective management. The table below simplifies the classification of the region's coastal, estuarine and marine assets, it is recognised that there is some variation between individual river basins – these differences can be attributed to spatial differences in temperature, water availability and exposure to dominant energy sources – such as wind/waves and climatic events – these are particularly evident in asset classes ME 6 and ME 7. Further delineation by geographic area for these asset classes may be necessary at the implementation level to capture the discrete differences in asset sensitivity and adaptive capacity in the region.

Figure 1 identifies the list of Estuarine and Marine Benthic Assets that were defined through the Science Panel Assessment undertakings for the Plan.

FIGURE 11: COASTAL, ESTUARINE AND MARINE ECOSYSTEMS - BENTHIC ASSETS OF THE BURNETT MARY

|            |                                            |                            | Dominant Energy  | Dominant<br>Biotic |                |
|------------|--------------------------------------------|----------------------------|------------------|--------------------|----------------|
| Asset Code | Description                                | Aquatic Zone               | Regime           | Structure          | Consolidation  |
|            | Intertidal Rock                            |                            |                  |                    |                |
| ME 1       | Platform                                   | Intertidal                 | Low              | Bare               | Consolidated   |
| ME 2       | Sandy Beach                                | Intertidal                 | Undifferentiated | Bare               | Sand           |
| ME 3       | Mud Flat / Sand Flat                       | Intertidal                 | Low              | Bare               | Mud            |
| ME 4       | Basalt Boulder Beach / Cobble              | Intertidal (HAT to<br>MSL) | Undifferentiated | Bare               | Boulders       |
| ME 5       | Tidal Salt Pan                             | Intertidal                 | Low              | Encrusting         | Unknown        |
| ME 6       | Intertidal Seagrass                        | Intertidal                 | Low              | Low Veg            | Unknown        |
| ME 7       | Tidal Salt Marsh                           | Intertidal                 | Low              | Low Veg            | Unknown        |
| ME 8       | Mangrove                                   | Intertidal                 | Low              | Med-High<br>Veg    | Unknown        |
| ME 9       | Intertidal Sessile<br>(Corals and Sponges) | Intertidal                 | Low              | Sessile<br>Fauna   | Unknown        |
| ME 10      | Subtidal Platform                          | Subtidal                   | Low              | Bare               | Consolidated   |
| ME 11      | ΛΕ 11 Sandy Bottom Subtidal                |                            | High/Low*        | Bare               | Sand           |
| ME 12      | Muddy Bottom                               | Subtidal                   | Low Bare         |                    | Mud            |
| ME 13      | Pebbly Bottom<br>(includes gravel)         | Subtidal/Intertidal        | Undifferentiated | Bare               | Unconsolidated |

|        | Seagrass Subtidal -   |          |      | Low-Med |                |
|--------|-----------------------|----------|------|---------|----------------|
| ME 14a | Baffle                | Subtidal | High | Veg     | Mud /Sand      |
|        | Seagrass Subtidal -   |          |      | Low-Med |                |
| ME 14b | Coastal Catchments    | Subtidal | Low  | Veg     | Mud /Sand      |
|        |                       |          |      | Low-Med |                |
| ME 15  | Algae                 | Subtidal | High | Veg     | Mud /Sand      |
|        | Sessile (Corals,      |          |      |         |                |
|        | Sponges & Coralline   |          |      |         |                |
|        | Crustose Algae) fauna |          |      |         |                |
|        | Inshore (GSS & 2km    |          |      | Sessile |                |
| ME 16  | along Coast)          | Subtidal | Low  | Fauna   | Consolidated   |
|        | Sessile (Corals,      |          |      |         |                |
|        | Sponges &             |          |      |         |                |
|        | Rhodoliths) fauna     |          |      |         |                |
|        | Inshore (GSS & 2km    |          |      | Sessile |                |
| ME 17  | along Coast)          | Subtidal | Low  | Fauna   | Unconsolidated |
|        | Sessile (Corals and   |          |      |         |                |
|        | Sponges) fauna        |          |      | Sessile |                |
| ME 18  | Offshore              | Subtidal | High | Fauna   | Unknown        |

<sup>\*</sup> The region is predominantly split into two wave energy regimes – the high energy regimes experienced north of Agnes Water and south of Rainbow Beach (and offshore of Fraser Island) and the comparatively low energy regimes restricted by Fraser Island, the Capricorn Bunker Group of islands and reefs to the north west.

Added to this are the various sub-regional water column water types (and within these individual seascapes) can be found within the region.

## **Water Asset Types**

In terms of the region's waters, predominantly there are two wave energy regimes – the high energy regimes experienced north of Agnes Water and south of Rainbow Beach (and offshore of Fraser Island) and the comparatively low energy regimes restricted by Fraser Island, the Capricorn Bunker Group of islands and reefs to the north west.

In addition, various sub-regional water types, including individual seascapes, can be found within the region. Broadly these consist of eight areas A-H — although only seven of these (B-H) are located within the Burnett Mary region. The water types have been broadly classified using drivers such as dominant energy source and freshwater influence (surface water runoff) — which together define turbidity, and temperature. Spatial information also influences exchange time which is a key differential for individual seascapes within sub-regions C and G. Table 2 displays these areas.

NEED SOME TEXT FROM MIKE/ MARIA in terms of dynamics and conceptual models.

TABLE 2: COASTAL, ESTUARINE AND MARINE ECOSYSTEMS – WATER TYPES OF THE BURNETT MARY

| S<br>R | Subregion                                                                                                                                                                                                                                                           | Energy source                                                                                                                                                                                                                                                                                                                   | Exchange<br>time                                               | Temperature                                                                                                                                                            | Water                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Turbidity                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| "      |                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                 | tille                                                          |                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Α      | Fitzroy-Keppels-Corio (located outside the regional boundary)                                                                                                                                                                                                       | Tidal, some wind energy offshore. Tides are medium, 4.5-5m tides, north 6m tides. Wind energy is lower than tidal.                                                                                                                                                                                                              | Medium - inner area near has comparatively long exchange time. | Fairly stable temperature, usually 23-26°C. As low as 21°C in cold winter. Fitzroy river can reach 15°C in a cold winter. Temperature range is an important attribute. | Saline – after a flood may be low salinity for 6-9 weeks as far as Rockhampton. Mean annual salinity for Area 4 is lower than Hervey Bay.  Three freshwater sources. Fitzroy, very episodic, ambient is dry tropics with little freshwater input for 8-9 months due to the regulated flow -some flow for 3 months JFM. Flow is strongly seasonal – can be high on a big flood or low volume wet season.  Well-mixed, flood freshwater sits on top, but frequently mixed.                                                                                                             | High; Dominated by Fitzroy R. Keppel Bay shallow, turbid inshore. Fitzroy flows out turbid most of the time. Small freshwater inputs from Coorooman Ck (turbid) & Corio Bay (cleaner, sand based system, poorer nutrients, tannins). East of the Keppel Islands is usually clear water, except during Fitzroy floods when the plume extends far beyond the Keppels. Shallow area north of Curtis Island is either turbid or clear depending on prevailing conditions. |
| В      | Gladstone Harbour (the bottom section of this water type is located within the Burnett Mary region)  Highly modified system, a lot of development on periphery, dredging, shallow. Harbour dredged to 20m. Remainder of the subregion averages 5-10m average depth. | Tidal, currents are very strong due to tidal exchange. Tidal amplitude is 30-50cm lower than in subregion A. High due to going through channels. Tidal water going up the Narrows doesn't leave the harbour. There are two tidal feeders: one north of Facing Island between Facing and Curtis islands creates 3 tidal effects. | Medium,<br>except for the<br>Narrows.                          |                                                                                                                                                                        | Saline - fresh during large events. Calliope & Boyne Rivers are the two main feeders. The Calliope is unregulated, whereas there is little exchange of freshwater from the Boyne: 2002-2011 all freshwater runoff was retained within Awonga dam, with Boyne estuary acting as an enclosed bay. During 2011, 12, 13 Awonga dam overflowed – Boyne changed from being an enclosed bay, to a normal river system. Harbour can become fairly fresh except for the outer harbour areas. Calliope medium, Boyne low are comparatively smaller freshwater input than Fitzroy.  Well mixed. | High-medium; ranging from turbid to clear. During big tides highly turbid, persistent SE prevailing winds create turbidity. During winter the area becomes clearer during the low tides. Boyne is naturally clearer, due to its gravel based rock. The Calliope is only turbid in lower reaches, clearer upstream even on a medium size flood. Seasonally turbid with low light in summer.                                                                            |
| С      | Colosseum-Rodds-Bustard Head-south to Roundhill Head High condition area, highly valued area is a draft HEV. Shallow bay, <10m, extensive                                                                                                                           | Half tidal energy of B:<br>force is medium – 2-3m<br>tidal range. A complex<br>tidal mix exists due to<br>the number of<br>contributing channels.                                                                                                                                                                               | Reasonably<br>confined –<br>Medium to<br>low.                  |                                                                                                                                                                        | Saline bay most of the time, seldom low salinity. Creeks have short catchments, experience intermittent flow for a day or two. Limited freshwater, more sand than mud, Creeks feeding into the area are a natural system with no barriers. Overland flow is low.                                                                                                                                                                                                                                                                                                                     | Medium; 75% turbid, 25% clear. Clearer system, sand based, not mud based. Due to the smaller tidal range, less energy contributes to turbidity. C is a much clearer system than area B.                                                                                                                                                                                                                                                                               |

|   | intertidal areas, extensive<br>channels, estuaries include<br>Colosseum, 12 mile, 7 mile Ck,<br>Worthington, Pancake Ck.                                                                                                                                            | There is a tidal channel behind Hummock Hill Island. Wind - Medium; wind direction differs greatly from B. Wave exposure – SE swells are deflected around the peninsulas.                                                                                |                                       |                                            | SR C misses the heavy tropical rain events. Worthington Creek is a very minor freshwater source. Well-mixed, quite shallow.                                                                                                                                                                                                                             |                                            |
|---|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|--------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|
| D | Capricorn Channel inter-reefal area, east side of Port Clinton  Most water here is 20-30m deep, which is the depth where wind-waves & bottom shear meet. East of Shoalwater Bay is slightly deeper—"fern grounds"- soft coral /gorgonian to 1m in height on bottom. | Ocean currents medium, wind medium; tidal energy is quite high to the north towards Shoalwater Bay which experiences 6m – to the south tidal energy is medium— 3m tides. D2 has a higher tidal range than D1, where offshore the tides are much smaller. | Medium residence time.                | Uniform, usual<br>sea temp, 23 -<br>26 °C. | Saline - usually rainfall. Episodic riverine input from the Fitzroy River during the largest flood events.  Well mixed, not aware of any vertical stratification.                                                                                                                                                                                       | Low with low light attenuation.            |
| Е | Capricorn Bunker group including Lady Musgrave Island Islands reduce the energy flow, although there is less reef matrix than the rest of the GBR to the north.                                                                                                     | East side of the islands<br>experience high wave<br>energy – moderate tidal<br>flows through the reefs.                                                                                                                                                  |                                       |                                            | Saline - Water type is close enough to D1 & D2 - should it be D3? [May not differ enough to make it a different water body]. Well-mixed vertically, although topographic effects are slight compared with the rest of the GBR.                                                                                                                          |                                            |
| F | Round Hill Head to Elliott Heads  Benthos is a "desolate sand area" with very few features  Is the Capricorn Eddy drawing in nutrients by upwelling?  Probably there is a high                                                                                      | Wave action via wind as<br>the energy driver for<br>the SE swell. Exposure<br>to some SE swell i.e.<br>through the gap<br>between Fraser Island<br>and the GBR – surf<br>experienced at Agnes                                                            | Low - very<br>high exchange<br>rates. | 21-25°C.                                   | Saline – similar to seawater. Input is small: Kolan River has interbasin freshwater transfers to the Burnett, means it acts like an enclosed bay; Littabella; Burnett is impounded thus ambient flows are low; there is moderate freshwater input into the system during highly seasonally episodic events. Freshwater input dispersed evenly along the | Low turbidity. Light availability is good. |

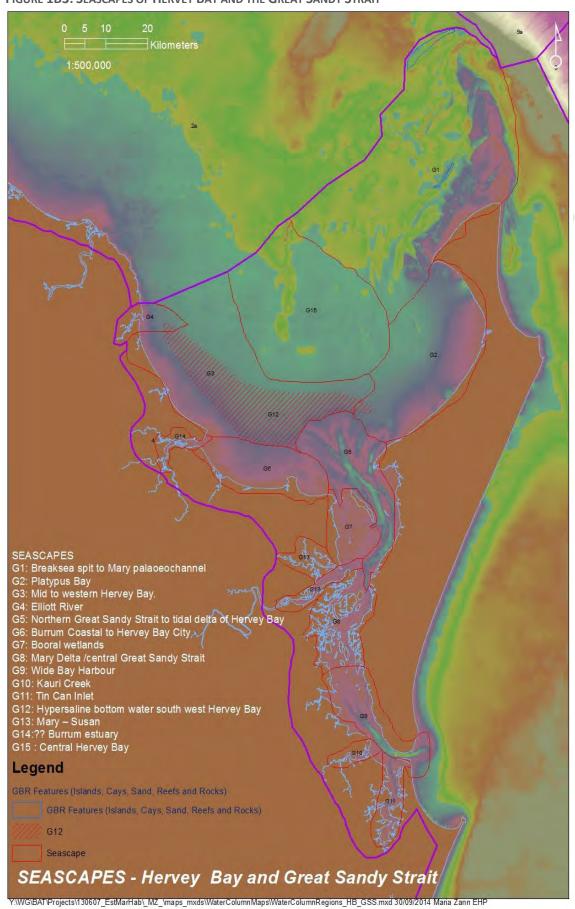
|   |                                   |                           | 1             |              |                                                 |                                                                                |
|---|-----------------------------------|---------------------------|---------------|--------------|-------------------------------------------------|--------------------------------------------------------------------------------|
|   | delivery of nutrients.            | Water. Few                |               |              | whole coastline during ambient conditions,      |                                                                                |
|   | Chlorophyll A is low, high        | topographic features      |               |              | experiencing low levels of input except in      |                                                                                |
|   | uptake & growth? BENTHIC          | including Lady Elliott    |               |              | events.                                         |                                                                                |
|   | BIOTA are species diagnostic of   | reduce the wave energy    |               |              |                                                 |                                                                                |
|   | a sandy bottom and reasonably     | flow. Its eastward        |               |              | M-L volumes. Well-mixed, shallow, wind          |                                                                                |
|   | clear water, characteristics that | boundary is Lady Elliott  |               |              | driven.                                         |                                                                                |
|   | are very important for main       | to Breaksea Spit          |               |              |                                                 |                                                                                |
|   | fishery species in this area:     | (excluding the Spit).     |               |              |                                                 |                                                                                |
|   | scallops, Moreton Bay bugs,       | (South of here Fraser     |               |              |                                                 |                                                                                |
|   | spanner crabs (sandy substrate    | Island is the energy      |               |              |                                                 |                                                                                |
|   | users) all benthic feeders.       | boundary).                |               |              |                                                 |                                                                                |
|   | Sandy areas are important         |                           |               |              |                                                 |                                                                                |
|   | ecologically to coral, bacterial  |                           |               |              |                                                 |                                                                                |
|   | layer on sediment fixes N from    |                           |               |              | 0 4                                             |                                                                                |
|   | the atmosphere into a             |                           |               |              |                                                 |                                                                                |
|   | biologically usable form that     |                           |               |              |                                                 |                                                                                |
|   | coral can use. In this area is    |                           |               |              |                                                 |                                                                                |
|   | some coffee rock substrate        |                           |               | 12           |                                                 |                                                                                |
|   | with soft coral growing on        |                           |               |              |                                                 |                                                                                |
|   | these areas but due to            |                           |               |              |                                                 |                                                                                |
|   | reworking of sediment through     |                           |               |              |                                                 |                                                                                |
|   | sand movement there is less       |                           |               |              |                                                 |                                                                                |
|   | coffee rock & soft coral than in  |                           |               |              |                                                 |                                                                                |
|   | Hervey Bay. DPIF & Roland         |                           |               |              |                                                 |                                                                                |
|   | Pitcher mapped deepwater          |                           |               |              |                                                 |                                                                                |
|   | seagrass,                         |                           |               |              |                                                 |                                                                                |
|   | sponge/gorgonian/soft coral       |                           |               |              |                                                 |                                                                                |
|   | gardens.                          |                           |               |              |                                                 |                                                                                |
|   |                                   |                           |               |              |                                                 |                                                                                |
| G | Hervey Bay (Elliott Heads-        | 3 energy drivers – wind,  | Very low to   | Warmer water | High nutrients in close to the shore. There us  | Intermittently turbid. Mid Strait is                                           |
|   | Breaksea Spit to Wide Bay Bar)    | tides, slight waves       | High          | than further | another waterbody at the bottom (G2) – the      | mostly turbid. Locally wind generated                                          |
|   | 0 (0                              | during SE winds, up to    | 6 11 1        | north– a     | highly stratified highly saline water for 9-10. | turbidity in northerly – from Burrum<br>to Hervey Bay city. 2-3m tides. Turbid |
|   | Consists of 3 areas:              | 1.5m waves during         | South is      | degree       | This is unique; it drives the current           | except at slack tide. Clearer in                                               |
|   | a) Platypus Bay ciguatera,        | northerlies. Blocking all | always tidal. | warmer than  | circulation, where the water from the sea       | northern Straits. Very significant                                             |
|   | dinoflagellates, water sits /     | wave energy is Fraser     | Tides running | north,       | (Ribbe, Grawe references). Mary is the major    | groundwater input from Fraser Island                                           |
|   | unionagenates, water sits /       |                           | to south &    |              |                                                 |                                                                                |

|   | slack.                          | Island. Sand pushed       | north – relief | especially in   | water input – highly episodic / seasonal.   | – freshwater.                        |
|---|---------------------------------|---------------------------|----------------|-----------------|---------------------------------------------|--------------------------------------|
|   | Siderii                         | from east to west.        | shows the      | winter.         | Burrum is a minor influence.                | Treshwater.                          |
|   | b) Hervey Bay & northern        | Western side is slightly  | boundary of    | Summer          | building a million initiative.              |                                      |
|   | Great Sandy Strait              | more wind exposed in      | fast tidal     | inshore water   |                                             | Middleton et al 1987 describe Fraser |
|   |                                 | SE (Jan-Aug); south side  | flows.         | temperatures    |                                             | Island 'mangrove winter waters'      |
|   | c) Remainder of Great Sandy     | exposed in NW (Aug-       | Amphidromal    | can go to 32°C. |                                             | nutrient rich, low oxygen, entering  |
|   | Strait.                         | Jan).                     | point mid      | can go to 32 C. |                                             | EAC at 100m depth both N and S of    |
|   |                                 | Janj.                     | Strait, north  |                 |                                             | Fraser. 3 states exist when a fresh. |
|   | Benthic biota driven by benthic |                           | of Moonboom    |                 |                                             |                                      |
|   | structure. More substrate       |                           | Island where   |                 |                                             |                                      |
|   | structure than SRF: such as old |                           | tides meet     |                 |                                             |                                      |
|   | river channel, lots of broken   |                           | from both      |                 |                                             |                                      |
|   | patches of coffee rock reef &   |                           | north and      |                 |                                             |                                      |
|   | coral, deep holes associated    |                           | south.         |                 |                                             |                                      |
|   | with the old river bed that     |                           | 30utii.        |                 |                                             |                                      |
|   | were isolated from the          |                           | Exchange in    |                 |                                             |                                      |
|   | remainder of the river bed due  |                           | Platypus Bay / |                 |                                             |                                      |
|   | to sand. Coffee rock reef       |                           | Hervey Bay is  |                 |                                             |                                      |
|   | around Rooney's Pt. Sand        |                           | very low.      | 1               |                                             |                                      |
|   | dunes are moving west from      |                           | - , -          |                 |                                             |                                      |
|   | Fraser Island. The Great Sandy  |                           |                |                 |                                             |                                      |
|   | Strait is a complex system.     |                           |                |                 |                                             |                                      |
|   | Extensive intertidal and        |                           |                |                 |                                             |                                      |
|   | subtidal banks mostly           |                           |                |                 |                                             |                                      |
|   | composed of sand. Subtidal      |                           |                |                 |                                             |                                      |
|   | consolidated substrates within  |                           |                |                 |                                             |                                      |
|   | the Strait are a mixture of     |                           |                |                 |                                             |                                      |
|   | coffee rock and sandstone       | AY                        |                |                 |                                             |                                      |
|   | reefs.                          |                           |                |                 |                                             |                                      |
| Н | Breaksea Spit to NSW Border     | Current dominated by      | Moderate       | Temperature     | Saline – seawater. Inputs are scattered and | Clearest of all subregions.          |
|   | and beyond – the Tweed          | EAC & wind (waves,        | nutrients.     | of Area 2°C in  | even i.e.: Noosa, Maroochy, Mooloola,       |                                      |
|   |                                 | swell). Strongly oceanic. |                | summer is       | Nerang, Tallebudgera Creek, Tweed River.    |                                      |
|   | Narrow distance between the     | Energy magnitude is       |                | elevated 1.5-   | Diverse point source.                       |                                      |
|   | coast and the 100m contour,     | high-energy wind &        |                | 2degrees over   |                                             |                                      |
|   | steep drop off close to shore.  | wave, drives high         |                | 25years, in the |                                             |                                      |

| Banks occur offshore e.g.       | coastal erosion. | southern GBR  |  |
|---------------------------------|------------------|---------------|--|
| Gardener banks etc.             |                  | lagoon. See   |  |
|                                 |                  | Sea Surface   |  |
| Reefs off Moreton Island are    |                  | Temperature   |  |
| northernmost extent of kelp.    |                  | maps – deeper |  |
| Demersal fish populations are   |                  | waters have   |  |
| changing - fish moving down on  |                  | less          |  |
| EAC due to climate change       |                  | temperature   |  |
| include: Red Emperor,           |                  | change than   |  |
| Nannygai off the Gold Coast;    |                  | surface       |  |
| Red throat emperor were         |                  | waters.       |  |
| previously north of Fraser      |                  |               |  |
| Island in 1970s-80s, now off    |                  |               |  |
| Cape Moreton; Central Qld       |                  |               |  |
| species including finger mark & |                  |               |  |
| golden snapper are now          |                  |               |  |
| common as far south as Tin      |                  |               |  |
| Can Bay.                        |                  |               |  |
|                                 |                  |               |  |

As previously stated, when examining the water assets or water column types, it is also possible to further sub-divide these assets into individual seascapes. This is particularly relevant for the near coastal systems (C & G) where there is greater sub-regional variation.

Colosseum to 1770 seascapes (C): Colosseum Inlet (C1), 7 mile creek (C2), Turkey Beach Rodds Harbour (C3), Pancake outer – Jenny Lind connection is very limited only (C4), Rodd's Bay (C5), Bustard Bay to 1770 (C6).


Hervey Bay / Great Sandy Strait seascapes: Breaksea spit to Mary palaeochannel (G1), Platypus Bay (G2), Mid to western Hervey Bay (G3), Elliott River (G4), Northern Great Sandy Strait to tidal delta of Hervey Bay (G5), Burrum Coastal to Hervey Bay City (G6), Booral wetlands (G7), Mary Delta /central Great Sandy Strait (G8), Wide Bay Harbour (G9), Kauri Creek (G10), Tin Can Inlet (G11), Hypersaline bottom water south west Hervey Bay (G12), Mary-Susan (G13), Burrum Estuary (G14) and Central Hervey Bay (H15).

As these classifications are currently based on a provisional classification system, the higher level or water column types were used for the purposes of this assessment.

FIGURE 1A2: COASTAL, ESTUARINE AND MARINE ECOSYSTEMS WATER TYPES OF THE BURNETT MARY



FIGURE 1B3: SEASCAPES OF HERVEY BAY AND THE GREAT SANDY STRAIT



### 5.4.3 POTENTIAL CLIMATE FUTURES

Under a Potential Future Climate at **2030 and 2090**, a number of climate model simulations have been made by the CSIRO and Bureau of Meteorology. These are based on climate model simulations following a set of greenhouse gas, aerosol and land-use scenarios that are consistent with socioeconomic assumptions of how the future may evolve. The well mixed concentrations of greenhouse gases and aerosols in the atmosphere are affected by emissions as well as absorption through land and ocean sinks.

There are four Representative Concentration Pathways (RCPs) underpinned by different emissions. They represent a plausible range of radiative forcing (in W/m²) during the 21<sup>st</sup> century relative to pre-industrial levels. Radiative forcing is a measure of the energy absorbed and retained in the lower atmosphere. The RCPs are:

- RCP8.5: high radiative forcing (high emissions)
- RCP4.5 and 6.0: intermediate radiative forcing (intermediate emissions)
- RCP2.6: low radiative forcing (low emissions).

RCP8.5, represents a future with little curbing of emissions, with carbon dioxide concentrations reaching 940 ppm by 2100. The higher of the two intermediate concentration pathways (RCP6.0) assumes implementation of some mitigation strategies, with carbon dioxide reaching 670 ppm by 2100. RCP4.5 describes somewhat higher emissions than RCP6.0 in the early part of the century, with emissions peaking earlier then declining, and stabilisation of the carbon dioxide concentration at about 540 ppm by 2100.

RCP2.6 describes emissions that peak around 2020 and then rapidly decline, with the carbon dioxide concentration at about 420 ppm by 2100. It is likely that later in the century active removal of carbon dioxide from the atmosphere would be required for this scenario to be achieved.

For the purposes of this assessment, only RCP4.5 and RCP8.5 were considered as current emissions are already tracking above this level and radical intervention would be required to reduce radiative forcing below these levels.

The Coastal & Marine systems of the region were assessed by an External Expert Panel (2014) to determine the vulnerabilities to climate change of the various asset classes. The detailed results of the Assessment are contained within the attached spreadsheet. It was deemed that, in general, Coastal & Marine systems of the region were sensitive to the following climate change exposure indicators:

- Air temperature Increases;
- Increasing lengths of dry periods;
- Increased frequency of intense rainfall events;
- Extreme coastal sea levels;
- Ocean temperature increase; and
- Ocean Acidification.

Under a Potential Future Climate at **2030 and 2090**, the following predictions have been made by the CSIRO and Bureau of Meteorology:

| Climate | Potential Climate Future 2030                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Potential Climate Future 2090                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| RCP 4.5 | <ul> <li>Air temperature increase (annual maximum) 0.9°C (0.6-1.3).</li> <li>Time spent in drought is projected, with medium confidence, to increase over the course of the century.</li> <li>Understanding of the physical processes that cause extreme rainfall, coupled with modelled projections, indicate with high confidence a future increase in the intensity of extreme rainfall events, although the magnitude of the increases cannot be confidently projected.</li> <li>Increase in sea level (Gladstone) 0.13m (0.09-0.17).</li> <li>Ocean temperature increase (Gladstone) 0.7°C (0.5 to 1.0).</li> <li>Ocean acidification (predicted pH change) -0.07 (-0.07 to -0.06).</li> </ul>    | <ul> <li>Air temperature increase (annual maximum) 1.9°C (1.2 to 2.9).</li> <li>Time spent in drought is projected, with medium confidence, to increase over the course of the century.</li> <li>Understanding of the physical processes that cause extreme rainfall, coupled with modelled projections, indicate with high confidence a future increase in the intensity of extreme rainfall events, although the magnitude of the increases cannot be confidently projected.</li> <li>Increase in sea level (Gladstone) 0.47m (0.30 to 0.64).</li> <li>Ocean temperature increase (Gladstone) 1.5°C (1.1 to 1.9).</li> <li>Ocean acidification (predicted pH change) -0.10 (-0.18 to 0.38).</li> </ul> |
| RCP 8.5 | <ul> <li>Air temperature increase (annual maximum) 1.0°C (0.5-1.4).</li> <li>Time spent in drought is projected, with medium confidence, to increase over the course of the century.</li> <li>Understanding of the physical processes that cause extreme rainfall, coupled with modelled projections, indicate with high confidence a future increase in the intensity of extreme rainfall events, although the magnitude of the increases cannot be confidently projected.</li> <li>Increase in sea level (Gladstone) 0.13m (0.09 to 0.18).</li> <li>Ocean temperature increase (Gladstone) 0.8°C (0.5 to 1.0).</li> <li>Ocean acidification (predicted pH change) -0.08 (-0.08 to -0.07).</li> </ul> | <ul> <li>Air temperature increase (annual maximum) 3.6°C (2.9 to 4.7).</li> <li>Time spent in drought is projected, with medium confidence, to increase over the course of the century.</li> <li>Understanding of the physical processes that cause extreme rainfall, coupled with modelled projections, indicate with high confidence a future increase in the intensity of extreme rainfall events, although the magnitude of the increases cannot be confidently projected.</li> <li>Increase in sea level (Gladstone) 0.64m (0.44 to 0.86).</li> <li>Ocean temperature increase (Gladstone) 2.9°C (2.1 to 3.5).</li> <li>Ocean acidification (predicted pH change) -0.14 (-0.26 to 0.45).</li> </ul> |

(10th percentile to 90th percentile values)

From Exposure Indicators, as per Vulnerability Assessments – based on Dowdy, A. et al. 2015, East Coast Cluster Report, Climate Change in Australia Projections for Australia's Natural Resource Management Regions: Cluster Reports, eds. Ekström, M. et al., CSIRO and Bureau of Meteorology, Australia.

From this, it is clear that coastal and marine assets and their associated values (Individual habitats and species) would be vulnerable. Ultimately, each of the Coastal and Marine asset classes will be susceptible to one or multiple climate change exposure indicators. For example – mangroves in the Burnett River will respond to changes in air temperature, increasing length of dry periods (drought), increased frequency of intense rainfall events and changes in sea level. These are summarised below.

TABLE 3: BROAD ASSESSMENT OF BENTHIC ASSET VULNERABILITY TO DIFFERENT COMPONENT OF CLIMATE CHANGE EXPOSURE.

| Asset code | Asset description                             | Air temperature | Drought  | Storms   | Sea Level Rise | Ocean temperature | Ocean acidification                  |
|------------|-----------------------------------------------|-----------------|----------|----------|----------------|-------------------|--------------------------------------|
| ME 1       | Intertidal Rock Platform                      | ✓               | <b>√</b> |          | √<br>Benefit   | 50                |                                      |
| ME 2       | Sandy Beach                                   | ✓               |          | ✓        | ✓              |                   | Potential implications for meiofauna |
| ME 3       | Mud Flat / Sand Flat                          | ✓               | ✓        | <b>√</b> | ✓              |                   |                                      |
| ME 4       | Basalt Boulder Beach / Cobble                 | <b>√</b>        | ✓        |          |                |                   |                                      |
| ME 5       | Tidal Salt Pan                                | ✓               |          | <b>√</b> | ✓              |                   |                                      |
| ME 6       | Intertidal Seagrass                           | ✓               | ✓        | ✓        | ✓              | ✓                 |                                      |
| ME 7       | Tidal Salt Marsh                              | ✓               | ✓        | ✓        | ✓              |                   |                                      |
| ME 8       | Mangrove                                      | ✓               | <b>√</b> | <b>√</b> | ✓              |                   |                                      |
| ME 9       | Intertidal Sessile (Corals and Sponges)       | ✓               | ✓        | <b>√</b> | <b>√</b>       | ✓                 | ✓                                    |
| ME 10      | Subtidal Platform                             |                 |          | ✓        | ✓              |                   |                                      |
| ME 11      | Sandy Bottom                                  |                 |          | ✓        | ✓              |                   |                                      |
| ME 12      | Muddy Bottom                                  |                 |          | ✓        | ✓              |                   |                                      |
| ME 13      | Pebbly Bottom (includes gravel)               |                 |          | ✓        |                | ✓                 | ✓                                    |
| ME 14a     | Seagrass Subtidal - Baffle                    |                 | ✓        | ✓        | ✓              | ✓                 |                                      |
| ME 14b     | Seagrass Subtidal - Coastal Catchments        |                 | ✓        | <b>√</b> | <b>√</b>       | <b>√</b>          |                                      |
| ME 15      | Algae                                         |                 |          | ✓        |                | <b>√</b>          |                                      |
| ME 16      | Sessile (Corals, Sponges & CCA) fauna Inshore |                 |          | <b>√</b> | ✓              | <b>√</b>          | ✓                                    |

| ME 17 | Sessile (Corals, Sponges & Rhodoliths) fauna Inshore | <b>√</b> | ✓ | <b>√</b> | ✓ |
|-------|------------------------------------------------------|----------|---|----------|---|
| ME 18 | Sessile (Corals and Sponges) fauna Offshore          | ✓        | ✓ | <b>√</b> | ✓ |

To enable vulnerability to be prioritised across each of the assets (habitat – 18 and marine water types – 6), response and vulnerability to six potential climate change impacts were more formally assessed. These were:

- 1. Increase in annual maximum (change in °C)
- 2. Duration of time spent in drought (% change from baseline)
- 3. Increased frequency of intense rainfall events (% increase from baseline)
- 4. Extreme Coastal Sea Level Rise (increase in sea level in metres)
- 5. Increased Ocean Temperatures (increase in °C)
- 6. Increased Ocean Acidification (predicted pH).

From this the following vulnerability assessment was derived (see Appendix XXXX for full results).

TABLE 4A: VULNERABILITY ASSESSMENT FOR BURNETT MARY COASTAL, ESTUARINE AND MARINE BENTHIC ASSETS (ORDERED BY AVERAGE VULNERABILITY)

| Asset |                                                                             | Exposure | Sensitivity - average | Sensitivity -<br>max | Potential<br>Impact -<br>average | Potential<br>Impact - max | Adaptive capacity | Vulnerability -<br>average | Vulnerability -<br>max |
|-------|-----------------------------------------------------------------------------|----------|-----------------------|----------------------|----------------------------------|---------------------------|-------------------|----------------------------|------------------------|
| ME8   | Mangrove                                                                    | 5        | 4.5                   | 6.0                  | 22.5                             | 30.0                      | 2.4               | 11.7                       | 15.6                   |
| ME9   | Intertidal sessile                                                          | 5        | 3.7                   | 6.0                  | 18.3                             | 30.0                      | 2.1               | 10.6                       | 17.4                   |
| ME17  | Inshore subtidal sessile (Corals,<br>Sponges & Rhodoliths)                  | 5        | 3.7                   | 6.0                  | 18.3                             | 30.0                      | 2.3               | 9.9                        | 16.2                   |
| ME1   | Rocky intertidal                                                            | 5        | 3.0                   | 6.0                  | 15.0                             | 30.0                      | 1.8               | 9.6                        | 19.2                   |
| ME16  | Inshore subtidal sessile (Corals,<br>Sponges & Coralline Crustose<br>Algae) | 5        | 3.5                   | 6.0                  | 17.5                             | 30.0                      | 2.3               | 9.5                        | 16.2                   |
| ME4   | Basalt boulder beach - e.g.<br>Woongarra                                    | 5        | 3.0                   | 6.0                  | 15.0                             | 30.0                      | 2.0               | 9.0                        | 18.0                   |
| ME5   | Salt pan                                                                    | 5        | 3.3                   | 6.0                  | 16.7                             | 30.0                      | 2.4               | 8.7                        | 15.6                   |
| ME6   | Intertidal Seagrass                                                         | 5        | 2.8                   | 6.0                  | 14.2                             | 30.0                      | 2.0               | 8.5                        | 18.0                   |
| ME2   | Sandy beach                                                                 | 5        | 2.8                   | 5.0                  | 14.2                             | 25.0                      | 2.1               | 8.2                        | 14.5                   |
| ME7   | Salt Marsh                                                                  | 5        | 3.0                   | 6.0                  | 15.0                             | 30.0                      | 2.4               | 7.8                        | 15.6                   |
| ME18  | Offshore subtidal sessile                                                   | 5        | 3.5                   | 6.0                  | 17.5                             | 30.0                      | 3.0               | 7.0                        | 12.0                   |
| ME3   | Mud or Sand flat                                                            | 5        | 2.3                   | 3.0                  | 11.7                             | 15.0                      | 2.4               | 6.1                        | 7.8                    |
| ME11  | Sandy bottom                                                                | 5        | 2.3                   | 3.0                  | 11.7                             | 15.0                      | 2.5               | 5.8                        | 7.5                    |
| ME13  | Pebbly bottom (includes gravel)                                             | 5        | 2.7                   | 6.0                  | 13.3                             | 30.0                      | 3.0               | 5.3                        | 12.0                   |
| ME10  | Subtidal platform                                                           | 5        | 2.2                   | 3.0                  | 10.8                             | 15.0                      | 2.6               | 5.2                        | 7.2                    |
| ME12  | Muddy bottom                                                                | 5        | 2.2                   | 3.0                  | 10.8                             | 15.0                      | 2.6               | 5.2                        | 7.2                    |
| ME14  | Subtidal Seagrass                                                           | 5        | 2.2                   | 3.0                  | 10.8                             | 15.0                      | 2.6               | 5.2                        | 7.2                    |
| ME15  | Algae                                                                       | 5        | 2.2                   | 3.0                  | 10.8                             | 15.0                      | 2.9               | 4.6                        | 6.3                    |

TABLE 4B: VULNERABILITY ASSESSMENT FOR BURNETT MARY COASTAL, ESTUARINE AND MARINE WATER TYPES

| Asset |                                                         | Exposure | Sensitivity - average | Sensitivity -<br>max | Potential<br>Impact -<br>average | Potential<br>Impact - max | Adaptive<br>capacity | Vulnerability -<br>average | Vulnerability -<br>max |
|-------|---------------------------------------------------------|----------|-----------------------|----------------------|----------------------------------|---------------------------|----------------------|----------------------------|------------------------|
| MWG   | Hervey Bay                                              | 5        | 4.8                   | 6.0                  | 24.2                             | 30.0                      | 1.8                  | 15.5                       | 19.2                   |
| MWF   | Round Hill Head to Elliott<br>Heads                     | 5        | 4.0                   | 3.0                  | 20.0                             | 15.0                      | 2.4                  | 10.4                       | 7.8                    |
| MWC   | Colosseum-Rodds-Bustard<br>Head-south to Roundhill Head | 5        | 4.0                   | 3.0                  | 20.0                             | 15.0                      | 3.0                  | 8.0                        | 6.0                    |
| MWH   | Breaksea Spit to NSW Border                             | 5        | 2.8                   | 2.0                  | 14.2                             | 10.0                      | 2.6                  | 6.8                        | 4.8                    |
| MWE   | Capricorn Bunker group                                  | 5        | 2.8                   | 2.0                  | 14.2                             | 10.0                      | 3.2                  | 5.1                        | 3.6                    |
| MWD   | Capricorn Channel inter-reefal area                     | 5        | 2.8                   | 2.0                  | 14.2                             | 10.0                      | 3.4                  | 4.5                        | 3.2                    |

From these, we can surmise that the top ranking assets could be considered more vulnerable to the implications of Climate Change. What is notable is the number of highly ranked assets – both benthic and water types. Given their proximity and exposure to such a large number of potential impacts, this is not surprising.

Of the benthic assets, those most vulnerable include mangroves, intertidal sessile (corals and sponges), inshore subtidal sessile (coral, sponges, coralline crustose algae and rhodoliths), intertidal rocky, basalt boulder and sandy foreshores, salt pan, seagrass and saltmarsh. Those considered least vulnerable were algae – although as the region is located in the sub-tropics, it is not characterised by macro algae beds with both temporal (winter dominant) and spatial variation in algae. Instead, productivity is driven by the salt marsh, mangroves and seagrass tidal wetlands – all of which are highly vulnerable.

For the water types, Hervey Bay (or more specifically the marine waters of Hervey Bay / Great Sandy Strait) were the most vulnerable coastal and marine asset in the Burnett Mary region. This is of concern as this water type supports the Great Sandy Strait Ramsar wetland and is intrinsically linked to many of the tidal wetlands listed above and their associated species (including *Environmental Protection and Biodiversity Conservation Act 1999* listed migratory and resident shorebirds, dugongs, Australian humpback dolphins, turtles and sea snakes).

For all actions, these assets should be considered a high priority to maintain healthy and resilient coastal, estuarine and marine ecosystems.

# 5.4.4 ESTUARINE AND MARINE ECOSYSTEMS VISION, TARGETS & DESIRED OUTCOMES

The visions and targets listed in the NRM Plan are non-statutory. They seek to achieve and align with long-term sustainability outcomes and principles referred to in the Wide Bay Burnett, Central Queensland and South East Queensland Regional Plan's and other relevant State and Commonwealth Plans.

The indicative Vision, 2020 Target and Desired Outcomes for the Estuarine and Marine Ecosystem Assets are summarised below.

| ASSET       | VISION 2031                             | 2020 Target Theme    | TARGETS 20 | 020                                                                                                 |
|-------------|-----------------------------------------|----------------------|------------|-----------------------------------------------------------------------------------------------------|
| COACTAL     | Constal naturation and                  | Dhysical and         | CN41       | Critical cools sized comparitions (interestings) and response are identified by 2020 to a food who  |
| COASTAL,    | Coastal, estuarine and                  | Physical and         | CM1        | Critical ecological connections (interactions) and processes are identified by 2020 (e.g. food webs |
| ESTUARINE & | marine resources and                    | Biological Processes |            | etc.).                                                                                              |
| MARINE      | their processes:                        |                      | CM2        | That surface water and groundwater flows are measured and maintain ecological connections           |
| ECOSYSTEMS  | are healthy and                         |                      |            | that underpin coastal values by 2020.                                                               |
|             | resilient                               |                      | CM3        | That geomorphological processes (including riverine and shoreline) maintain or restore sediment     |
|             | <ul> <li>are appreciated for</li> </ul> |                      |            | transport that sustains beaches and coastal dunes by 2020.                                          |
|             | their value and                         |                      |            |                                                                                                     |
|             | vulnerability to                        |                      |            | Significant coastal dunes are those considered to be a system or landform that has a high degree    |
|             | changes in climate                      |                      |            | of ecological integrity and biodiversity conservation value (and satisfies a number of criteria as  |
|             | and human activity                      |                      |            | defined in the M&E strategy).                                                                       |
|             | • underpin our                          | Coastal, Estuarine   | CM4        | That by 2020, the extent of all coastal, estuarine and marine benthic habitats will be known and a  |
|             | community's                             | and Marine Habitats  |            | baseline created.                                                                                   |
|             | industries and                          |                      | CM5        | That by 2020, the function and value of all coastal, estuarine and marine benthic habitats are      |
|             | lifestyles.                             |                      |            | improved or maintained. [=condition]                                                                |
|             |                                         |                      | CM6        | There is no net loss of the extent of natural wetlands.                                             |
|             |                                         |                      | CM7        | There is an improvement in the ecological processes and environmental values of natural             |
|             |                                         |                      |            | wetlands.                                                                                           |
|             |                                         | Coastal, Estuarine   | CM8        | That by 2020, there is no adverse change in biological diversity in coastal, estuarine and marine   |
|             |                                         | and Marine Plants &  |            | species.                                                                                            |
|             |                                         | Animals              | CM9        | That by 2020, plants and animals of ecological, economic, conservation or iconic value are          |
|             |                                         |                      |            | identified and that where possible actions are implemented to improve or sustain their              |
|             |                                         |                      |            | populations.                                                                                        |
|             |                                         | Water quality        | CM10       | CM10 – That by 2020, actions as identified in the Burnett Mary Water Quality Improvement Plan*      |
|             |                                         |                      |            | are implemented to achieve water quality targets to maintain coastal, estuarine and marine          |
|             |                                         |                      |            | ecosystem health.                                                                                   |
|             |                                         |                      |            |                                                                                                     |

#### **Physical and Biological Processes**

CM1 – Critical ecological connections (interactions) and processes are identified by 2020 (e.g. food webs etc.).

CM2 – That surface water and groundwater flows are measured and maintain ecological connections that underpin coastal values by 2020.

CM3 – That geomorphological processes (including riverine and shoreline) maintain or restore sediment transport that sustains beaches and coastal dunes\* by 2020.

\*'Significant coastal dunes are those considered to be a system or landform that has a high degree of ecological integrity and biodiversity conservation value (and satisfies a number of criteria as defined in the M&E strategy)'.

The Wide Bay Burnett coast contains some of the most diverse shorelines in Australia. Some shorelines are exposed to oceanic swells whereas others are protected resulting in less sandy and muddier shores. The region contains stretches of exposed sandy beaches such as Fraser Island and at Double Island Point, several estuarine systems such as the Great Sandy Strait, a diverse range of rivers and creeks such as the Mary and Burnett rivers, Baffle and Theodolite creeks, and coral cay islands such as Lady Elliot and Lady Musgrave Islands.

Coastal and ocean processes involve the movement of water, sediment, plants and animals caused by wind, wave and currents, between rivers, the shoreline and the open ocean. The Wide Bay Burnett region's shoreline (or coastline) is constantly changing as a consequence of coastal ocean processes that occur naturally (through erosion or accretion), but are also accelerated through the combined effects of coastal hazards (storm and tide flooding), coastal development (removal of coastal and marine habitats) and climate change.

Coastal development in erosion prone areas (areas that have a determined vulnerability) alters natural wave, current and sediment transport patterns, resulting in increased erosion or accretion. Inappropriate placement of new coastal development in erosion prone areas poses social, economic and environmental consequences and costs. This results in the loss of shorelines, habitats, and places development is at risk of loss or damage.

Man-made protection structures such as seawalls, groynes, or activities such as excavation, extractive industries, dredging, marine infrastructure or beach nourishment may also disrupt natural coastal processes and impact on coastal and marine habitats.

In addition, climate change is expected to make the Wide Bay Burnett region's dune systems, wetlands and low-lying estuarine systems more vulnerable to storms, floods and drought. Sea level rise is expected to inundate low lying areas and alter wetland type, extent and condition.

Areas free of development within erosion prone areas or along tidal waterways, and buffering development from our coastal and marine habitats will allow for natural coastal processes to occur, negating the need to protect property and life. After all, our natural coastal and marine habitats (such as sand dunes and wetlands) are like our kidneys -filtering agents that provide coastal protection, and reduce the impacts of coastal flooding.

These impacts need to be monitored to determine their status and any possible mitigation measures required for their protection. *Coastal Protection and Management Act 1995* identifies erosion prone areas and the coastal management district where these coastal processes occur.

[The Queensland Herbarium is responsible for recording and publishing the extent and type of wetlands. This baseline information and mapping service will be integrated into extent assessment and monitoring activities. The Queensland Wetlands Program provides tools for wetland buffer planning and assessment. These tools will be used in integrated wetland planning and assessment processes].

Increases in dramatic climatic events – particularly cyclones will lead to increases in coastal erosion, while sea level rise reduces coastal accretion resulting in less sand build up along our foreshores. Both have implications for adjacent natural and built infrastructure.

#### **Coastal, Estuarine and Marine Habitats**

CM4 – That by 2020, the extent of all coastal, estuarine and marine benthic habitats will be known and a baseline created.

CM5 – That by 2020, the function and value of all coastal, estuarine and marine benthic habitats are improved or maintained. [=condition]

CM6 – There is no net loss of the extent of natural wetlands.

Coastal, estuarine and marine habitats of the Wide Bay Burnett lie between the well-known Moreton Bay and Great Barrier Reef. But in comparison, very little is known about the region's habitats, diversity, health and connectivity. Gaining a base level of knowledge about all the habitats in the region is the first step before ecological health and connectivity can be assessed. Several types of connectivity that are important for the natural function of marine habitats are a result of aquatic flows between catchments and reefs. These flows transport chemicals, nutrients, sediments, plants and animals between aquatic habitats and their qualities or condition affect:

- Land and Sea (east-west) connections between estuarine and marine habitats. For example, the
  importance and ability of coastal dunes and wetlands to filter nutrients, sediments and
  chemicals from water from urban, industrial and agricultural activities, before entering inshore
  marine habitats such as seagrass and coral reefs.
- North-south connections in the Wide Bay Burnett associated with ocean and nearshore currents, and between the seafloor and top of the water column. For example, the currents between the Great Barrier Reef and Great Sandy Strait Ramsar area.
- The reliance of species on different habitats for different parts of their lifecycle. For example, mullet rely on freshwater rivers and the open ocean at different stages of growth and development.

Ultimately, unhealthy and disconnected habitats in the region will mean there will be a reduction in recreational enjoyment and economic productivity. Therefore, knowledge about the coastal, estuarine and marine habitats of the region, how they are connected and what state they are in, is imperative to the community and its lifestyle and will assist in its future management.

Increasing air temperatures will impact on intertidal wetlands – leading to desiccation, while increases in sea temperatures will lead to higher incidences of coral bleaching events (and ultimately the collapse of coral reefs).

#### **Coastal, Estuarine and Marine Plants and Animals**

CM8 - That by 2020, there is no adverse change in biological diversity in coastal, estuarine and marine species.

CM9 - That by 2020, plants and animals of ecological, economic, conservation or iconic value are identified and that where possible actions are implemented to improve or sustain their populations.

The Wide Bay Burnett region has an international, national and state obligation to protect many of its plants and animals, their populations and habitats, and to maintain the ecosystems upon which they rely.

There are many species that are considered significant for a variety of reasons including those that are iconic or valued by the community, or in need of conservation because they are considered endangered, vulnerable or near-threatened. Others species are used to measure environmental health or economic importance and are considered significant indicators.

Dolphins and turtles in the region for example, are considered iconic and important both culturally and economically. They have become significant for tourism activities in some coastal areas (like humpback whales), and have totemic value to traditional owners such as the Butchulla people. Dugongs are also considered iconic and a conservation significant species as it is classified as vulnerable under Queensland Government legislation and are identified as a critical priority under the Back on Track species prioritisation framework. Healthy dugong and green turtles require healthy seagrass meadows in which to forage. Many economically significant fishery species are also reliant on seagrass meadows, along with mangroves and near-shore reefs. Coral reef fish in particular are a keystone species with an essential link to and indicator of reef condition. These habitats play a vital role in ecosystem health and the presence and location of many plants and animals in the region.

Better information is needed in the region about significant species, their populations, habitat requirements and key lifecycles —that is, where they spawn, spend their adult life and their movement (or connectivity) between these. Monitoring other species considered indicators (reflecting habitat health) or keystone (reflecting roles in an ecosystem, and ecosystem health or resilience) is also required. It is important to gain more knowledge about human interactions with significant species, such as fisheries, tourism, resource and coastal planning, and the implications this may have for the region's coastal, estuarine and marine habitats. (For example, marine pests are plants and animals that potentially impact on marine habitats and resources.) This will allow the region to have a greater understanding about its significant species, their population numbers, extent and connectivity to the landscape and seascape into the future.

It should also be noted that within the context of the climate change scenarios, that ocean currents are expected to intensify and this will have implications for the spread of species (including invasive

species). Ocean acidification will also impact on fish larvae, molluscs, crustaceans, corals and plankton which will impact on food webs and fisheries productivity.

#### **Water Quality**

CM10 – That by 2020, actions as identified in the Burnett Mary Water Quality Improvement Plan\* are implemented to achieve water quality targets to maintain coastal, estuarine and marine ecosystem health.

Water quality of the Wide Bay Burnett region is affected by discharge (from an identifiable location) or runoff from either surface or groundwater. Sediments, nutrients and chemicals are suspended in the water column and enter the estuarine and marine environment (the receiving waters of catchments) from major coastal streams like the Burnett, Mary and Burrum Rivers.

At the end of the catchment are the coastal habitats such as seagrass meadows, coral reefs, and mangroves (and encompasses the southern portion of the Great Barrier Reef lagoon, which receives their flood waters). These habitats depend on good water quality to be healthy and in turn supply essential habitat and food to many plants and animals. Some actions (e.g. the Reef Plan on-ground works through BMRG and MRCCC) have started to address these issues; but require local monitoring of the coastal habitats to determine their effectiveness.

Valuing water quality services and having a healthy coastal, estuarine and marine ecosystem has been recognised as important to the Wide Bay Burnett community especially for human health. What is regularly and traditionally measured for water quality are physio-chemical indicators such as dissolved oxygen, pH, temperature, salinity and nutrients (nitrogen and phosphorus). These water quality indicators provide information about what is impacting on the ecosystem.

Whereas biological water quality indicators such as algae, fish species or crab holes measure the health of the plants and animals and the habitats on which they rely, providing an overall picture of the condition of the ecosystem.

Changing land management practices, improving or maintaining healthy vegetation along waterways, and addressing water use in urban and agricultural development can have positive outcomes for the quality of coastal and marine waters and for our sustained consumption and enjoyment of the Wide Bay Burnett region.

The impacts of dramatic climatic events such as cyclones and flooding have a considerable impact on coastal water quality leading to increased runoff of sediment and a corresponding increase in turbidity.

## 5.4.6 INVESTMENT STRATEGY

We need to take action to reduce risks and threats and improve biophysical condition. However, we also need to improve policy and planning, awareness and behaviour, adoption of improved management practices and improve the region's understanding and knowledge of natural systems and the interaction of human activities on those systems. All of these activities have one thing in common, which is the need for investment of resources - both people and funding.

To follow are the specific activities identified for the delivery of outcomes for the Estuarine and Marine Assets as identified through Community Consultation and Scientific Expert Panels. The activities were identified for addressing key issues for the Priority Assets of the Estuarine and Marine Ecosystems Asset Group and were subject to a prioritisation process examining:

- Cost
- Benefit
- Risk
- Barriers to Adoption
- Social Acceptability
- Carbon Sequestration Potential
- Maladaptation

| 2020 Targets                                                                                                                          | Desired Outcomes                                                                                                                                          | Activity Category              | Activity                                                                                                                                                                                                                                                                                                                                                                                                       | Priority Ranking | Climate change adaptation or mitigation co-benefit |
|---------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|----------------------------------------------------|
| CM1 – Critical ecological connections (interactions) and processes are identified by 2020 (e.g. food webs etc.).                      | Critical ecological connections – such as food webs and habitat mosaics are understood, informing future prioritisation and                               | Planning & Governance          | Knowledge is provided to and incorporated into all levels of government to inform future planning and delivery – reducing threats by protecting and maintaining connectivity across the terrestrial-marine continuum.                                                                                                                                                                                          |                  |                                                    |
|                                                                                                                                       | delivery.                                                                                                                                                 | On-Ground                      | Support actions to protect, maintain or<br>restore coastal, estuarine and marine<br>ecological connectivity (links to<br>freshwater and terrestrial programs).                                                                                                                                                                                                                                                 | Ö                |                                                    |
|                                                                                                                                       |                                                                                                                                                           | Community<br>Capacity Building | <ul> <li>Create "it's all connected" education tools (for example -website, guidelines, brochures, DVDs, YouTube, videos) explaining ecological connectivity, its significance for where and how we live and implications for the regional economy e.g. tourism, fisheries productivity, dolphin watching etc.</li> <li>Highlight the importance of connectivity through education programs such as</li> </ul> |                  |                                                    |
|                                                                                                                                       |                                                                                                                                                           | Science                        | Marvellous Mangroves and Shorebird activities.  Review of current knowledge to build a                                                                                                                                                                                                                                                                                                                         |                  |                                                    |
|                                                                                                                                       |                                                                                                                                                           |                                | conceptual model of ecological connectivity in the coastal, estuarine and marine systems of the Burnett Mary (including identification and prioritisation of knowledge gaps)                                                                                                                                                                                                                                   |                  |                                                    |
| CM2 – That surface water and groundwater flows are measured and maintain ecological connections that underpin coastal values by 2020. | Of these critical ecological connections, surface and ground water flows maintain ecological connectivity and coastal values such as seagrass production. | Planning & Governance          | That updates to knowledge are provided to the Queensland Government to be incorporated into policy and planning reviews, with surface and ground water flows managed to maintain coastal ecological values through planning tools such as the Water Act 2000.                                                                                                                                                  |                  |                                                    |
|                                                                                                                                       |                                                                                                                                                           | On-Ground                      | That where surface and groundwater<br>flows have declined e.g. through water                                                                                                                                                                                                                                                                                                                                   |                  |                                                    |

|                            | 1                         |                   |   | harvesting that innovative programs are         |   |                               |                             |
|----------------------------|---------------------------|-------------------|---|-------------------------------------------------|---|-------------------------------|-----------------------------|
|                            |                           |                   |   | harvesting, that innovative programs are        |   |                               |                             |
|                            |                           |                   |   | designed and delivered to reduce take           |   |                               |                             |
|                            |                           |                   |   | and restore surface and groundwater             |   |                               |                             |
|                            |                           |                   |   | flows to optimal conditions ( <i>This could</i> |   |                               |                             |
|                            |                           |                   |   | also link to Rural Water Use Efficiency         |   |                               |                             |
|                            |                           |                   |   | and Irrigation Efficiency programs with         |   | <i>&gt; -</i>                 |                             |
|                            |                           |                   |   | the agricultural sector).                       |   |                               |                             |
|                            |                           | Community         | • | Create "it's all connected" education tools     |   |                               |                             |
|                            |                           | Capacity Building |   | (for example -website, guidelines,              |   |                               |                             |
|                            |                           |                   |   | brochures, DVDs, YouTube, videos)               |   |                               |                             |
|                            |                           |                   |   | explaining the role of surface and              |   |                               |                             |
|                            |                           |                   |   | groundwater flows to maintain healthy           |   |                               |                             |
|                            |                           |                   |   | coastal ecosystems.                             |   |                               |                             |
|                            |                           | Science           | • | Compile existing data sets to identify          |   |                               |                             |
|                            |                           |                   |   | current surface flows and establish             |   |                               |                             |
|                            |                           |                   |   | baselines to maintain ecological                |   |                               |                             |
|                            |                           |                   |   | connectivity.                                   |   |                               |                             |
|                            |                           |                   | • | Address data gaps – principally                 |   |                               |                             |
|                            |                           |                   |   | groundwater flows to establish baselines        |   |                               |                             |
|                            |                           |                   |   | to maintain ecological connectivity.            |   |                               |                             |
| CM3 – That                 | Reduction of              | Planning &        | • | State interests (including the Queensland       | • | Establish the baselines       | Enabling the efficient and  |
| geomorphological processes | development (or coastal   | Governance        |   | Coastal Plan, 2011 and WBB Regional             |   | required for monitoring       | natural movement of         |
| (including riverine and    | retreat) will enable      |                   |   | Plan, 2009-2031) are incorporated and           |   | (for example, significant     | sand enables coastal        |
| shoreline) maintain or     | greater adaptation to sea |                   |   | updated in local government planning            |   | coastal dunes, tidal          | accretion and reduces the   |
| restore sediment transport | level rise and natural    |                   |   | schemes.                                        |   | wetlands, and                 | impacts of sea level rise   |
| that sustains beaches and  | adaptation of coastal     |                   | • | Review and reconcile inconsistencies            |   | undeveloped tidal             | and severe coastal          |
| coastal dunes by 2020.     | ecosystems and less       |                   |   | between policies (for example,                  |   | waterways) and seek           | erosion during dramatic     |
|                            | impacts to built          |                   |   | Queensland Coastal Plan and Climate             |   | community involvement         | climatic events e.g.        |
|                            | infrastructure /          |                   |   | Change 2100) to provide a clearer               |   | and support.                  | cyclones. Beaches are also  |
|                            | development.              |                   |   | direction and for management.                   | • | Undertake a review of         | a natural buffer            |
|                            |                           |                   | • | Seek clarification of legal and insurance       |   | existing tidal structures for | protecting natural and      |
|                            | Sand movement (sand       |                   |   | ramifications of coastal developments.          |   | validity and location.        | built infrastructure.       |
|                            | budget, imports and       |                   | • | Incorporate scientific, economic and            | • | Create education tools        |                             |
|                            | exports) is maintained    |                   |   | liability information regarding coastal         |   | explaining the importance     | As sea level rises, beaches |
|                            | resulting in stable       |                   |   | ocean processes into guidelines for local       |   | of retaining natural          | and tidal wetlands will try |
|                            | beaches.                  |                   |   | governments and to inform the greater           |   | coastal environment and       | to migrate landward. If     |
|                            | Th                        |                   |   | community of the risks and threats to           |   | allowing natural coastal      | there are no buffers to     |
|                            | The natural extent and    |                   |   | biodiversity, life and property.                |   | processes to occur.           | built infrastructure, these |
|                            | dynamics of coastal       |                   | • | Long-term plans for marine development          |   |                               | ecosystems will be lost –   |
|                            | beaches and tidal         |                   |   | areas and structures (e.g. boat ramps or        |   |                               | reducing habitat, fisheries |

|                          |                   | <u>,                                      </u>                                   |                           |
|--------------------------|-------------------|----------------------------------------------------------------------------------|---------------------------|
| wetlands is maintained   |                   | other private and public maritime                                                | productivity and          |
| resulting in a stable    |                   | infrastructure) are developed.                                                   | impacting on recreational |
| natural environment able |                   | The development or review of shoreline                                           | and commercial fishing    |
| to limit flood discharge |                   | erosion management plans include                                                 | and tourism.              |
| and support diverse      |                   | and/or recognise ecosystem services and                                          |                           |
| populations and          |                   | function.                                                                        |                           |
| ecosystems that maintain |                   | Undertake a review of existing structures                                        |                           |
| coastal and marine       |                   | in tidal waterways for validity and                                              |                           |
| ecosystem services (e.g. |                   | location.                                                                        |                           |
| fisheries).              | On-Ground         | Unlawful structures in tidal wetlands and                                        |                           |
|                          |                   | on significant coastal dunes are                                                 |                           |
|                          |                   | approved, modified or removed in order                                           |                           |
|                          |                   | of priority.                                                                     |                           |
|                          | Community         | Provide training for local and state                                             |                           |
|                          | Capacity Building | government planners on the statutory                                             |                           |
|                          |                   | requirements (and options) for                                                   |                           |
|                          |                   | maintaining coastal ocean processes in                                           |                           |
|                          |                   | development assessment and planning.                                             |                           |
|                          |                   | Create education tools (for example -                                            |                           |
|                          |                   | website, guidelines, brochures, DVDs,                                            |                           |
|                          |                   | YouTube, videos) explaining the                                                  |                           |
|                          |                   | importance of coastal ocean processes                                            |                           |
|                          |                   | and the effects/risks of altering the                                            |                           |
|                          |                   | natural coastal environment.                                                     |                           |
|                          |                   | Create education tools explaining the     importance of retaining tidel wetlands |                           |
|                          |                   | importance of retaining tidal wetlands                                           |                           |
|                          |                   | and coastal dunes and allowing natural                                           |                           |
|                          | Science           | coastal processes to occur.                                                      |                           |
|                          | Science           | Coordinate and integrate the existing  local science regarding coastal occap     |                           |
|                          |                   | local science regarding coastal ocean processes (for example, climate change,    |                           |
|                          |                   | 1                                                                                |                           |
|                          |                   | hazards, oceanography and sand movement).                                        |                           |
|                          |                   | Coordinate intertidal and contour data.                                          |                           |
|                          |                   | Undertake a sediment volume study                                                |                           |
|                          |                   | (BPA) and understand sediment                                                    |                           |
|                          |                   | composition over time (palaeo-                                                   |                           |
|                          |                   | sedimentology).                                                                  |                           |
|                          |                   | Seek ownership and involvement from                                              |                           |
|                          |                   | the greater community to undertake                                               |                           |
|                          |                   | the greater community to undertake                                               |                           |

|                          |                           |                   |       | coastal monitoring programs, for           |    |                              |                            |
|--------------------------|---------------------------|-------------------|-------|--------------------------------------------|----|------------------------------|----------------------------|
|                          |                           |                   |       | example, Seagrass Watch.                   |    |                              |                            |
|                          |                           |                   | •     | Establish the baselines required for       |    |                              |                            |
|                          |                           |                   |       | monitoring (for example, significant       |    |                              |                            |
|                          |                           |                   |       | coastal dunes, tidal wetlands, and         |    |                              |                            |
|                          |                           |                   |       | undeveloped tidal waterways) and seek      |    |                              |                            |
|                          |                           |                   |       | community involvement and support          |    |                              |                            |
| CM4 – That by 2020, the  | Maintaining the extent of | Planning &        | ???   |                                            | 0  | Build upon the regional      | Tidal wetlands sequester   |
| extent of all coastal,   | our tidal wetlands is key | Governance        | • • • |                                            | V  | biopassage strategy.         | carbon faster and in       |
| estuarine and marine     | to providing both         | On-Ground         | •     |                                            | -0 | Increase the awareness       | greater quantities than    |
| benthic habitats will be | ecological processing     | Community         | +     | Educate the succtor community (Abyus Sh    |    | and importance of having     | land-based systems (this   |
| known and a baseline     | capacity and habitat to   | ,                 | •     | Educate the greater community (through     |    | healthy and connected        | is sometime referred to as |
| created.                 | maintain biodiversity and | Capacity Building |       | a variety of tools) about the importance   |    | coastal, estuarine and       | blue carbon). Mangroves    |
| created.                 | fisheries values of the   |                   |       | of coastal and marine habitats and the     |    | marine habitats and what     | and saltmarsh can          |
|                          |                           |                   |       | effects of development and other           |    |                              | sequester 6-8 tonnes of    |
|                          | region.                   |                   |       | threats.                                   |    | benefit this provides to the | · ·                        |
|                          |                           |                   | •     | Provide training for local and state       |    | community.                   | CO2/Ha/yr.                 |
|                          |                           |                   |       | government planners on the statutory       | 0  | Assess (through case         |                            |
|                          |                           |                   |       | requirements (and options, particularly    |    | studies) the effect of       | Tidal wetlands support     |
|                          |                           |                   |       | under the Queensland Coastal Plan) for     |    | development and              | fisheries and tourism,     |
|                          |                           |                   |       | maintaining habitat ecosystem function     |    | provision of buffers, to     | reduce the run-off of      |
|                          |                           |                   |       | in development assessment and              |    | estuarine and marine         | sediments and nutrients    |
|                          |                           |                   |       | planning.                                  |    | habitats.                    | and act as a physical      |
|                          |                           | Science           | •     | Classification and mapping of intertidal   |    |                              | buffer protecting          |
|                          |                           |                   |       | and subtidal estuarine and marine          |    |                              | coastlines (and coastal    |
|                          |                           |                   |       | habitats for the region (including         |    |                              | communities) from          |
|                          |                           |                   |       | groundwater dependence).                   |    |                              | dramatic climatic events.  |
|                          |                           |                   |       | Ground truth mapping and establish         |    |                              |                            |
|                          |                           |                   |       | baselines for all regional estuarine and   |    |                              |                            |
|                          |                           |                   |       | marine benthic habitats such as rhodolith  |    |                              |                            |
|                          |                           |                   |       | and bivalve beds.                          |    |                              |                            |
|                          |                           |                   |       | Coordinate and integrate existing local    |    |                              |                            |
|                          |                           |                   | •     | science on coastal, estuarine and marine   |    |                              |                            |
|                          |                           |                   |       |                                            |    |                              |                            |
|                          |                           |                   |       | habitats (including water) and undertake   |    |                              |                            |
|                          |                           |                   |       | future research.                           |    |                              |                            |
|                          |                           |                   | •     | Identify and prioritise habitats of high   |    |                              |                            |
|                          |                           |                   |       | ecological significance (utilising HES     |    |                              |                            |
|                          |                           |                   |       | methodology) to inform policy, planning    |    |                              |                            |
|                          |                           |                   |       | and management outcomes.                   |    |                              |                            |
|                          |                           |                   | •     | Align terrestrial and aquatic connectivity |    |                              |                            |
|                          |                           |                   |       | methodology and processes to coastal,      |    |                              |                            |

|                             |                           |                   |    | estuarine and marine.                                                              |   |                             |                          |
|-----------------------------|---------------------------|-------------------|----|------------------------------------------------------------------------------------|---|-----------------------------|--------------------------|
|                             |                           |                   | •  | Develop regionally specific conceptual                                             |   |                             |                          |
|                             |                           |                   |    | models to increase the understanding of                                            |   |                             |                          |
|                             |                           |                   |    | ecosystem processes and services of                                                |   |                             |                          |
|                             |                           |                   |    | habitats.                                                                          |   |                             |                          |
|                             |                           |                   | •  | Seek ownership and involvement from                                                |   |                             |                          |
|                             |                           |                   |    | the greater community to undertake                                                 |   |                             |                          |
|                             |                           |                   |    | monitoring programs, for example,                                                  |   |                             |                          |
|                             |                           |                   |    | Mangrove Watch, Reef Check.                                                        |   |                             |                          |
|                             |                           |                   | •  | Assess buffer implementation within or                                             |   |                             |                          |
|                             |                           |                   |    | adjacent to riparian areas, tidal wetlands                                         |   |                             |                          |
|                             |                           |                   |    | and significant coastal dunes.                                                     |   |                             |                          |
| CM5 – That by 2020, the     | Although we have some     | Planning &        |    | and significant coastal duries.                                                    | 0 | Classify and map intertidal | While the role of coral, |
| function and value of all   | information about key     | Governance        |    |                                                                                    |   | and subtidal estuarine and  | seagrass, mangroves and  |
| coastal, estuarine and      | habitats such as          | On-Ground         | •  | Undertake marine clean up initiatives.                                             | 1 | marine environments to      | salt marsh in carbon     |
| marine benthic habitats are | saltmarsh, mangroves,     | On-Ground         |    | Provide incentives, or other extension                                             |   | gain a better               | sequestration are        |
| improved or maintained.     | seagrass and coral        |                   | •  | services, for lower impact land uses, best                                         |   | understanding of the        | understood, there has    |
| [=condition]                | habitat our knowledge     |                   |    | management practices technical support                                             |   | ecosystem function and      | been little research on  |
| [-condition]                | regarding extent is       |                   |    |                                                                                    |   | services it provides. This  | some of our less common  |
|                             | incomplete or outdated    |                   |    | and education (particularly for                                                    |   | can then inform the         | habitats – such as       |
|                             | (>10 years). In order to  |                   |    | agricultural practices in tidal wetlands). Fencing tidal wetlands and remove stock |   | identification of high      | rhodoliths and bivalve   |
|                             | better manage our         |                   | •  | from sensitive tidal wetlands.                                                     |   | ecological significant      | beds.                    |
|                             | benthic habitats we need  |                   |    |                                                                                    |   | habitats. Starting with     | Seas.                    |
|                             | to classify and map them. |                   |    | Riparian restoration is undertaken and buffers implemented, particularly           |   | priority tidal wetlands     |                          |
|                             | ,                         |                   |    | adjacent to forested areas.                                                        |   | such as the Great Sandy     |                          |
|                             |                           |                   |    | Expand and implement the biopassage                                                |   | Strait Ramsar Wetland       |                          |
|                             |                           |                   | 15 | strategy in the region.                                                            |   | and Bustard Bay (critical   |                          |
|                             |                           | Community         |    | strategy in the region.                                                            | _ | aquatic habitat)            |                          |
|                             |                           | Capacity Building |    |                                                                                    |   | ,                           |                          |
|                             |                           |                   |    | Douglan ragionally specific consentual                                             | _ |                             |                          |
|                             |                           | Science           | •  | Develop regionally specific conceptual                                             |   |                             |                          |
|                             |                           |                   |    | models to increase the understanding of                                            |   |                             |                          |
|                             |                           |                   |    | ecosystem processes and services of                                                |   |                             |                          |
|                             | $\cap$ $\vee$             |                   |    | habitats.                                                                          |   |                             |                          |
|                             |                           |                   | •  | Identify and prioritise habitats of high                                           |   |                             |                          |
|                             |                           |                   |    | ecological significance (utilising HES                                             |   |                             |                          |
|                             |                           |                   |    | methodology) to inform policy, planning                                            |   |                             |                          |
|                             |                           |                   |    | and management outcomes.                                                           |   |                             |                          |
|                             |                           |                   | •  | Coordinate and integrate existing local                                            |   |                             |                          |
|                             |                           |                   |    | science on coastal, estuarine and marine                                           |   |                             |                          |
|                             |                           |                   |    | habitats (including water) and undertake                                           |   |                             |                          |

|                               | 1                         | T                 |                                                               | 1                                             |                               |
|-------------------------------|---------------------------|-------------------|---------------------------------------------------------------|-----------------------------------------------|-------------------------------|
|                               |                           |                   | future research.                                              |                                               |                               |
|                               |                           |                   | •                                                             |                                               |                               |
|                               |                           |                   |                                                               |                                               |                               |
| CM6 – There is no net loss of |                           | Planning &        | •                                                             | 0                                             |                               |
| the extent of natural         |                           | Governance        |                                                               |                                               |                               |
| wetlands.                     |                           | On-Ground         | •                                                             |                                               |                               |
|                               |                           | Community         | •                                                             |                                               |                               |
|                               |                           | Capacity Building |                                                               |                                               |                               |
|                               |                           | Science           | •                                                             | 0                                             |                               |
| CM7 – There is an             |                           | Planning &        | •                                                             | 0                                             |                               |
| improvement in the            |                           | Governance        |                                                               |                                               |                               |
| ecological processes and      |                           | On-Ground         | •                                                             |                                               |                               |
| environmental values of       |                           | Community         |                                                               | 0                                             |                               |
| natural wetlands.             |                           | Capacity Building |                                                               |                                               |                               |
|                               |                           | Science           |                                                               | 0                                             |                               |
| CM8 - That by 2020, there is  | EPBC and NCA Act listed   | Planning &        | Establish a list and prioritise other                         | <ul> <li>Map significant species</li> </ul>   | While some marine             |
| no adverse change in          | species deserve the       | Governance        | species of significance and review (refer                     | and fisheries habitat                         | species may have a small      |
| biological diversity in       | highest level of          |                   | Back of Track species prioritisation                          | (extent or distribution of                    | role to play in the fixing of |
| coastal, estuarine and        | protection and            |                   | process) and seek funding for research.                       | populations) and assess                       | carbon – such as hard         |
| marine species.               | conservation. Actions     |                   | <ul> <li>In planning, the consideration of impacts</li> </ul> | population numbers. This                      | corals and beche der mer      |
| ·                             | should contribute to the  |                   | on marine resources, throughout                               | can then inform the                           | (sea cucumbers), many         |
|                               | conservation and          |                   | different lifecycles and stages, including                    | identification of high                        | EPBC and NCA Act listed       |
|                               | recovery of these species |                   | migratory species is taken into account.                      | ecological significant                        | species are highly            |
|                               | (where feasible).         |                   | Develop regionally specific conceptual                        | habitats.                                     | susceptible to the impacts    |
|                               | ,                         |                   | models to increase the understanding of                       | <ul> <li>Utilise the Back on Track</li> </ul> | of climate change through     |
|                               |                           |                   | ecosystem processes and services of                           | prioritisation framework                      | reduced habitat, food         |
|                               |                           |                   | significant species and fisheries including                   | to gain and understanding                     | availability and less         |
|                               |                           |                   | connectivity, habitat requirements and                        | of other species at threat                    | optimal conditions for        |
|                               |                           |                   | species dynamics.                                             | within the region and seek                    | their life cycles (for        |
|                               |                           |                   | <ul> <li>Incorporate scientific, social and</li> </ul>        | funding opportunities for                     | example increased sand        |
|                               |                           |                   | economic information regarding                                | research into extent,                         | temperature will impact       |
|                               |                           |                   | significant species and fisheries into                        | lifecycle processes, habitat                  | on turtle hatchling           |
|                               | $\wedge$ $\vee$           |                   | guidelines for local governments and to                       | dependencies or                               | success). Climate change      |
|                               |                           |                   | inform the greater community of the                           | connectivity, movement,                       | mitigation will have a        |
|                               |                           |                   | risks and threats to biodiversity, and the                    | numbers etc.                                  | positive impact on key        |
|                               |                           |                   | importance of population dynamics etc.                        | <ul> <li>Analyse and identify</li> </ul>      | species.                      |
|                               |                           |                   | (for example, availability and genetic                        | keystone and indicator                        |                               |
|                               |                           |                   | variability of fish species from a                            | species for future                            |                               |
|                               |                           |                   | commercial, recreational and traditional                      | investment as a surrogate                     |                               |
|                               |                           |                   | owner perspective).                                           | for habitat/ecosystem                         |                               |

| <br>              |                                                              |                                             |  |
|-------------------|--------------------------------------------------------------|---------------------------------------------|--|
| On-Ground         | Delivery of best management practice                         | health.                                     |  |
|                   | and incentives for commercial and                            | <ul> <li>Establish the baselines</li> </ul> |  |
|                   | recreational fishers, and marine tourism.                    | required for monitoring                     |  |
|                   | Better utilise TUMRA's to assist in species                  | (for example, turtles,                      |  |
|                   | management delivery.                                         | dolphins etc) and seek                      |  |
|                   | Seek viable land and marine based                            | community involvement                       |  |
|                   | aquaculture that is appropriately located,                   | and support.                                |  |
|                   | not impacting on natural habitat or                          |                                             |  |
|                   | species.                                                     |                                             |  |
|                   | <ul> <li>Increase compliance and enforcement.</li> </ul>     |                                             |  |
|                   | Restore habitat connectivity and riparian                    |                                             |  |
|                   | catchment condition.                                         |                                             |  |
| Community         | Provide training for local and state                         |                                             |  |
| Capacity Building | government planners on the statutory                         |                                             |  |
|                   | requirements (and options, particularly                      |                                             |  |
|                   | under the Queensland Coastal Plan) for                       |                                             |  |
|                   | maintaining species extent and                               |                                             |  |
|                   | connectivity in development assessment                       |                                             |  |
|                   | and planning.                                                |                                             |  |
| Science           | <ul> <li>Identify and prioritise habitats of high</li> </ul> |                                             |  |
|                   | ecological significance (utilising HES                       |                                             |  |
|                   | methodology) to inform policy, planning                      |                                             |  |
|                   | and management outcomes.                                     |                                             |  |
|                   | Model and map species habitats                               |                                             |  |
|                   | including climate change predictions.                        |                                             |  |
|                   | Establish a baseline for significant species                 |                                             |  |
|                   | and fisheries population and extent.                         |                                             |  |
|                   | Conduct social and economic studies of                       |                                             |  |
|                   | services provided by significant species                     |                                             |  |
|                   | and fisheries                                                |                                             |  |
|                   | Seek ownership and involvement from                          |                                             |  |
|                   | the greater community to undertake                           |                                             |  |
|                   | monitoring programs, for example,                            |                                             |  |
| ~                 | Coastcare or Universities, and seek                          |                                             |  |
|                   | greater involvement in species incidence                     |                                             |  |
|                   | reporting.                                                   |                                             |  |
|                   | Identify keystone or indicator species for                   |                                             |  |
|                   | habitat condition and health.                                |                                             |  |
|                   | Identify where negative interactions with                    |                                             |  |
|                   | species exist and develop management                         |                                             |  |

|                              |                            | 1                 |   |                                          |   |                           |                             |
|------------------------------|----------------------------|-------------------|---|------------------------------------------|---|---------------------------|-----------------------------|
|                              |                            |                   |   | actions to reduce these risks.           |   |                           |                             |
| CM9: That by 2020, plants    | In some areas pressures    | Planning &        |   |                                          |   |                           |                             |
| and animals of ecological,   | on wild fisheries from     | Governance        |   |                                          |   |                           |                             |
| economic, conservation or    | land-based sources,        | On-Ground         |   |                                          |   |                           |                             |
| iconic value are identified  | habitat degradation and    | Community         |   |                                          |   |                           |                             |
| and that where possible      | over-fishing have led to   | Capacity Building |   |                                          |   |                           |                             |
| actions are implemented to   | an increase in fishing     | Science           |   |                                          |   |                           |                             |
| improve or sustain their     | effort and reduction of    |                   |   |                                          |   |                           |                             |
| populations.                 | stock. Our aim is to       |                   |   |                                          |   |                           |                             |
|                              | improve wild fisheries     |                   |   |                                          |   |                           |                             |
|                              | stocks.                    |                   |   |                                          |   |                           |                             |
|                              |                            |                   |   |                                          |   |                           |                             |
|                              | Extent & connectivity of   |                   |   |                                          |   |                           |                             |
|                              | significant species and    |                   |   |                                          |   |                           |                             |
|                              | fisheries are maintained   |                   |   |                                          |   |                           |                             |
|                              | in good condition.         |                   |   |                                          |   |                           |                             |
|                              |                            |                   |   |                                          |   |                           |                             |
| CM10: That by 2020, actions  | Improved water quality     | Planning &        | • | Amend Water Act 2000 to allow for        | 0 | Establish the baselines   | Water quality will decline  |
| as identified in the Burnett | entering the coastal and   | Governance        |   | marine water quality standards to be     |   | required for monitoring   | under climate change        |
| Mary Water Quality           | marine environments        |                   |   | placed in the Water Resource Plan.       |   | (for example, corals,     | scenarios becoming          |
| Improvement Plan* are        | (including healthier       |                   | • | Integrate the Queensland Coastal Plan    |   | scribbled angelfish, mud  | warmer, more acidic and     |
| implemented to achieve       | seagrass meadows and       |                   |   | with Environmental Protection Policy     |   | crabs etc.) and seek      | more turbid (as a result of |
| water quality targets to     | reef). Improved            |                   |   | (Water) and Water Quality Improvement    |   | community involvement     | an increasing frequency     |
| maintain coastal, estuarine  | catchment retention of     |                   |   | Plans, particularly when considering     |   | and support.              | of dramatic climatic        |
| and marine ecosystem         | nutrients, sediments,      |                   |   | development.                             | 0 | Assess the ability to     | events and run-off) and     |
| health.                      | chemicals etc. (through    |                   |   | Revise and reschedule WQIP Ecological    |   | implement the education   | more saline in closed       |
|                              | appropriate urban and      |                   |   | Values and Water Quality Objectives (for |   | and monitoring            | embayments such as          |
|                              | rural land use), resulting |                   |   | example, schedule under the              |   | components of the         | Hervey Bay. Improving       |
|                              | in less algal blooms and   |                   |   | Environmental Protection Policy the      |   | Healthy Waterways         | water quality will have a   |
|                              | reduced impacts to the     |                   |   | Baffle-Burnett Plan water quality        |   | Strategy for the Wide Bay | net benefit to tidal        |
|                              | marine environment.        |                   |   | objectives).                             |   | Burnett region.           | wetland habitat,            |
|                              |                            |                   | • | Implement State Planning Policy 4/11     | 0 | Seek long-term agreement  | significant species and     |
|                              |                            |                   |   | (protection of High Ecologically         |   | to maintain and extend    | fisheries.                  |
|                              |                            |                   |   | Significant wetlands).                   |   | the water quality         |                             |
|                              |                            |                   |   | Ensure appropriate development through   |   | monitoring programs, and  |                             |
|                              |                            |                   |   | regional planning tools.                 |   | other community total     |                             |
|                              |                            | On-Ground         | • | Coordinate and implement between         | 1 | water cycle management    |                             |
|                              |                            | on Ground         | • | Agencies and the community the           |   | programs for the region.  |                             |
|                              |                            |                   |   | reactivation and implementation of       | 0 | Integrate legislative and |                             |
|                              |                            |                   |   | Water Quality Improvement Plans          |   | community monitoring      |                             |
|                              |                            |                   |   | water quality improvement rialls         |   | , ,                       |                             |

|  |                    | <ul> <li>Provide incentives for industry to</li> </ul>     | programs into a regional |
|--|--------------------|------------------------------------------------------------|--------------------------|
|  |                    | undertake best management practice,                        | context.                 |
|  |                    | education relationship and technical                       |                          |
|  |                    | support for bettering water quality.                       |                          |
|  |                    | <ul> <li>Retain and restore vegetated filters /</li> </ul> |                          |
|  |                    | buffers (including in planning and                         |                          |
|  |                    | assessment).                                               |                          |
|  |                    | Implement Wide Bay Burnett version of                      |                          |
|  |                    | the Healthy Waterways Strategy                             |                          |
|  |                    | (education and monitoring components).                     |                          |
|  | Community          | Increase awareness of unaccounted costs                    |                          |
|  | Capacity Building  | of investment to assets such as poor                       |                          |
|  | capacity ballaning | water quality (for example, effects of                     |                          |
|  |                    | pollution on prawn fisheries, effects of                   |                          |
|  |                    | sediment loads on seagrass to                              |                          |
|  |                    | ecotourism).                                               |                          |
|  | Caianaa            |                                                            |                          |
|  | Science            | Undertake event monitoring and remote                      |                          |
|  |                    | sensing of receiving waters and link to                    |                          |
|  |                    | habitat condition monitoring.                              |                          |
|  |                    | Gain better understanding of                               |                          |
|  |                    | groundwater processes, Acid Sulphate                       |                          |
|  |                    | soils and pollution studies and link to                    |                          |
|  |                    | management.                                                |                          |
|  |                    | Establish nutrient hazardous coastal land                  |                          |
|  |                    | mapping (as per State Planning Policy                      |                          |
|  |                    | (Healthy Waters)).                                         |                          |
|  |                    | <ul> <li>Model sediments and nutrients coming</li> </ul>   |                          |
|  |                    | from the Mary River (including the                         |                          |
|  |                    | cumulative effects).                                       |                          |
|  |                    | <ul> <li>Maintain (and extend) EHP's ambient</li> </ul>    |                          |
|  |                    | water quality monitoring. Extend to                        |                          |
|  |                    | target biological indicators of water                      |                          |
|  |                    | quality such as seagrass meadows, corals,                  |                          |
|  |                    | scribbled angelfish, mud crabs and crab                    |                          |
|  |                    | holes.                                                     |                          |
|  |                    | <ul> <li>Establish better mapping products for</li> </ul>  |                          |
|  |                    | biological indicators including tidal                      |                          |
|  |                    | wetlands, riparian and foreshore                           |                          |
|  |                    | ·                                                          |                          |
|  |                    | outcomes/practices.                                        |                          |
|  |                    | vegetation, and link to management                         |                          |

|  | <ul> <li>Gain better understanding of the total water cycle management for the Wide Bay Burnett region (for example, the catchment sources of sediment, pesticides, pine discharge and path in receiving waters etc.).</li> <li>Provide support to (and standardise) community groups monitoring programs for total water cycle management (i.e. water quality, habitat protection, vegetation filter restoration etc.) and integrate into regional planning/management.</li> </ul> |
|--|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|--|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

<sup>\*</sup>Significant coastal dunes are those considered to be a system or landform that has a high degree of ecological integrity and biodiversity conservation value (and satisfies a number of criteria as defined in the M&E strategy).

| Coastal and Marine         | Ecosystems                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|----------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Themes                     | Specific Outcomes & Changes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Proposed Actions & Activities                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Coastal Ocean<br>Processes | <ul> <li>Environment Change</li> <li>The natural extent (spatial) and dynamics (temporal) of coastal beaches and tidal wetlands is maintained resulting in a stable natural environment able to limit flood discharge, and provide diverse populations and ecosystems.</li> <li>Sand movement (sand budget, imports and exports) is maintained resulting in stable beaches.</li> <li>Reduction of man-made structures in tidal waterways</li> <li>Long-term economic viability of coastal and marine ecosystem services (e.g. fisheries) is maintained</li> <li>Knowledge and Management Practice</li> <li>Development is set back and buffered within and adjacent to tidal wetlands and significant coastal dunes.</li> </ul> | <ul> <li>Coordinate and integrate the existing local science regarding coastal ocean processes (for example, climate change, hazards, oceanography and sand movement).</li> <li>State interests (including the Queensland Coastal Plan, 2011 and WBB Regional Plan, 2009-2031) are incorporated and updated in local government planning schemes.</li> <li>Provide training for local and state government planners on the statutory requirements (and options) for maintaining coastal ocean processes in development assessment and planning.</li> <li>Review and reconcile inconsistencies between policies (for example, Queensland Coastal Plan and Climate Change 2100) to provide a clearer direction and for management.</li> <li>Incorporate scientific, economic and liability information regarding coastal ocean processes into guidelines for local governments and to inform the greater community of the risks and threats to biodiversity, life and property.</li> <li>Create education tools (for example -website, guidelines, brochures, DVDs,</li> </ul> |

YouTube, videos) explaining the importance of coastal ocean processes and Increase awareness and importance of setbacks and the effects/risks of altering the natural coastal environment. buffers to the broader community. o The region acknowledges and understands the social, Long-term plans for marine development areas and structures (e.g. boat ramps economic and environmental values of coastal. or other private and public maritime infrastructure) are developed. estuarine and marine ecosystems and its services. Unlawful structures in tidal waterways are approved, modified or removed in o Improved planning decisions are made to maintain order of priority. coastal dynamics. The development or review of shoreline erosion management plans include Knowledge of coastal ocean processes is incorporated and/or recognise ecosystem services and function. into planning schemes. Establish a baseline for the natural extent of tidal wetlands and significant Tidal structures are approved along tidal waterways only coastal dunes. where necessary. Seek ownership and involvement from the greater community to undertake monitoring programs, for example, SeagrassWatch. Coordinate intertidal and contour data. Undertake a sediment volume study (BPA) and understand sediment composition over time (palaeo-sedimentology). Seek clarification of legal and insurance ramifications of coastal developments. Suggested Initial Priorities: Establish the baselines required for monitoring (for example, significant coastal dunes, tidal wetlands, and undeveloped tidal waterways) and seek community involvement and support. Undertake a review of existing tidal structures for validity and location. Create education tools explaining the importance of retaining natural coastal environment and allowing natural coastal processes to occur. **Coastal Ocean Environment Change** Establish the baselines required for monitoring (for example, significant coastal dunes, tidal wetlands, and undeveloped tidal waterways) and seek community **Processes** involvement and support. The natural extent (spatial) and dynamics (temporal) of coastal beaches and tidal wetlands is maintained Undertake a review of existing tidal structures for validity and location. resulting in a stable natural environment able to limit Create education tools explaining the importance of retaining natural coastal flood discharge, and provide diverse populations and environment and allowing natural coastal processes to occur. ecosystems. Sand movement (sand budget, imports and exports) is maintained resulting in stable beaches. Reduction of man-made structures in tidal waterways Long-term economic viability of coastal and marine ecosystem services (e.g. fisheries) is maintained **Knowledge and Management Practice** Development is set back and buffered within and adjacent to tidal wetlands and significant coastal dunes. Increase awareness and importance of setbacks and

| Coastal Estuarine and Marine Habitats | buffers to the broader community.  The region acknowledges and understands the social, economic and environmental values of coastal, estuarine and marine ecosystems and its services.  Improved planning decisions are made to maintain coastal dynamics.  Knowledge of coastal ocean processes is incorporated into planning schemes.  Tidal structures are approved along tidal waterways only where necessary.  Environment Change  The natural extent of intertidal and subtidal habitats, the ecosystem services and species diversity, is maintained.  Buffers are provided to reduce land-based threats (for example, point and diffuse sources, weeds, sediment flows) into tidal wetlands.  The connectivity (extent, flows and condition) and diversity of key habitats (mangroves, seagrass, nearshore reefs) is maintained.  Development on land or placement of structures does not affect, or maintains, hydrological processes (surface and groundwater flows). | <ul> <li>Classify and map intertidal and subtidal estuarine and marine habitats for the region (including groundwater dependence).</li> <li>Identify and prioritise habitats of high ecological significance (utilising HES methodology) to inform policy, planning and management outcomes.</li> <li>Align terrestrial and aquatic connectivity methodology and processes to coastal, estuarine and marine.</li> <li>Develop regionally specific conceptual models to increase the understanding of ecosystem processes and services of habitats.</li> <li>Educate the greater community (through a variety of tools) about the effects of development on coastal, estuarine and marine habitats.</li> <li>Coordinate and integrate existing local science on coastal, estuarine and marine habitats (including water) and undertake future research.</li> <li>Expand and implement the biopassage strategy in the region.</li> <li>Provide training for local and state government planners on the statutory</li> </ul> |
|---------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                       | further protection or better management.  Knowledge and management practices  Improved coastal management and appropriately located development through reducing fragmentation and alienation (keeping the landscape connected), and providing buffers to the natural environment.  Reduction of threats to coastal, estuarine and marine habitats through improved land management.  Increased awareness of the role habitats play in maintaining ecosystem function (for example, fisheries and their connectivity to a number of estuarine and marine habitats).  Communicating the value of healthy ecosystems and what managers are doing to maintain this (for example, reduced contaminants - cleaner water - ability to swim and provide healthy fish to eat).                                                                                                                                                                                                          | <ul> <li>maintaining habitat ecosystem function in development assessment and planning.</li> <li>Provide incentives, or other extension services, for lower impact land uses, best management practices technical support and education (particularly for agricultural practices in tidal wetlands).</li> <li>Fencing tidal wetlands and remove stock from sensitive tidal wetlands.</li> <li>Undertake marine clean up initiatives.</li> <li>Seek ownership and involvement from the greater community to undertake monitoring programs, for example, MangroveWatch, Reef-check.</li> <li>Riparian restoration is undertaken and buffers implemented, particularly adjacent to forested areas.</li> <li>Assess buffer implementation within or adjacent to riparian areas, tidal wetlands and significant coastal dunes.</li> </ul>                                                                                                                                                                                      |

- Increased awareness of the effects and disturbances of development (including maritime infrastructure) coastal, estuarine and marine biodiversity.
- Economic value and services of habitats (such as tourism, fishing) are maintained for community use.
- Classify and map intertidal and subtidal estuarine and marine environments to gain a better understanding of the ecosystem function and services it provides.
   This can then inform the identification of high ecological significant habitats.
- Build upon the regional biopassage strategy.
- Increase the awareness and importance of having healthy and connected coastal, estuarine and marine habitats and what benefit this provides to the community.
- Assess (through case studies) the effect of development and provision of buffers, to estuarine and marine habitats.

# Significant Species and Fisheries

#### **Environment Change**

- The extent and connectivity of significant species and fisheries is maintained and is good condition.
- Natural processes important for species dynamics, lifecycle and habitats are maintained within the region.
- Fishery stocks are sustainable and economically viable.
- The variability of population genetics is maintained through population dynamics.
- Maintain healthy and sustainable stocked impoundments (dams).

#### **Knowledge and management practices**

- Understand the population extent, behaviour, habitat requirements and connectivity of significant species and fisheries within the region.
- Increase the awareness of the role of significant species and fisheries in achieving social, economic and environmental sustainability.
- Improve the management of species and their habitats (regulatory and non-regulatory)
- Appropriate management and planning is undertaken for species of the region, including setbacks, light regimes, feral animal control etc. to reduce threats.
- Ensuring fishing effort aligns with stock availability and take, and maintains habitat condition.
- Understand the effects and importance of sustainable (and in some cases negative) interactions with significant species and fisheries (for example, sustainable tourism and fishing practice).
- Support impoundment fisheries to reduce impacts and pressures on marine resources.
- Continue enforcement practices.
- o Take into consideration species requirements in

- Establish a list and prioritise other species of significance and review (refer Back of Track species prioritisation process) and seek funding for research.
- Identify and prioritise habitats of high ecological significance (utilising HES methodology) to inform policy, planning and management outcomes.
- Model and map species habitats including climate change predictions.
- Establish a baseline for significant species and fisheries population and extent.
- Conduct social and economic studies of services provided by significant species and fisheries.
- Provide training for local and state government planners on the statutory requirements (and options, particularly under the Queensland Coastal Plan) for maintaining species extent and connectivity in development assessment and planning.
- In planning, the consideration of impacts on marine resources, throughout different lifecycles and stages, including migratory species is taken into account.
- Delivery of best management practice and incentives for commercial and recreational fishers, and marine tourism.
- Seek ownership and involvement from the greater community to undertake monitoring programs, for example, Coastcare or Universities, and seek greater involvement in species incidence reporting.
- Seek viable land and marine based aquaculture that is appropriately located, not impacting on natural habitat or species.
- Increase compliance and enforcement.
- Better utilise TUMRA's to assist in species management delivery.
- Develop regionally specific conceptual models to increase the understanding of ecosystem processes and services of significant species and fisheries including connectivity, habitat requirements and species dynamics.
- Restore habitat connectivity and riparian catchment condition.
- Identify keystone or indicator species for habitat condition and health.
- Identify where negative interactions with species exist and develop management actions to reduce these risks.
- Incorporate scientific, social and economic information regarding significant species and fisheries into guidelines for local governments and to inform the

greater community of the risks and threats to biodiversity, and the importance development and planning (for example, water resource planning and flow dynamics for species productivity and of population dynamics etc. (for example, availability and genetic variability of fish species from a commercial, recreational and traditional owner lifecycle processes). Uptake and continue best management practice to improve perspective). the condition of species. Initial Priorities: Map significant species and fisheries habitat (extent or distribution of populations) and assess population numbers. This can then inform the identification of high ecological significant habitats. Utilise the Back on Track prioritisation framework to gain and understanding of other species at threat within the region and seek funding opportunities for research into extent, lifecycle processes, habitat dependencies or connectivity, movement, numbers etc. Analyse and identify keystone and indicator species for future investment as a surrogate for habitat/ecosystem health. Establish the baselines required for monitoring (for example, turtles, dolphins etc) and seek community involvement and support. **Coastal Water Quality Environment Change** Amend Water Act 2000 to allow for marine water quality standards to be placed in the Water Resource Plan. Integrate the Queensland Coastal Plan with Environmental Protection Policy Improved catchment retention of nutrients, sediments. (Water) and Water Quality Improvement Plans, particularly when considering chemicals etc. through appropriate urban and rural development. landuse). Nutrient hazard areas (areas containing appreciable Coordinate and implement between Agencies and the community the levels of nutrients of concern, particularly nitrogen, reactivation and implementation of Water Quality Improvement Plans and, phosphorus, iron and organic matter) remain natural. revise and reschedule Ecological Values and Water Quality Objectives (for Impacts are reduced on these areas and habitats in the example, schedule under the Environmental Protection Policy the Bafflemarine environment resulting in less algal blooms. Burnett Plan water quality objectives). Improved water quality entering the coastal and marine Establish nutrient hazardous coastal land mapping (as per State Planning environments (including healthier seagrass meadows Policy (Healthy Waters)). and reef). Implement State Planning Policy 4/11 (protection of High Ecologically Vegetation filters (riparian, wetland and shoreline) are Significant wetlands). restored and retained. Implement Wide Bay Burnett version of the Healthy Waterways Strategy **Knowledge and management practices** (education and monitoring components). Ensure appropriate development through regional planning tools. Understanding the importance of water quality, quantity, Retain and restore vegetated filters / buffers (including in planning and groundwater, vegetated filters for ecosystem services. assessment). and health of habitats/species downstream. Maintain (and extend) EHP's ambient water quality monitoring. Extend to Regional landuse planning considers commutative target biological indicators of water quality such as seagrass meadows, corals, impacts on receiving environment (including scribbled angelfish, mud crabs and crab holes. groundwater). Establish better mapping products for biological indicators including tidal Planners (LG, QG and ES) increase the awareness of,

- and account for, coastal and marine water quantity in planning and assessment.
- Incorporate marine water quality/quantity in Water Resource Plans and planning.
- Better valuing of water conservation and water quality ecosystem services.
- Increase the awareness of impacts of st0rmwater (households, communities, LG, QG).
- o Reduce polluntants going into stormwater.
- Increase harvesting and recycling of stormwater and effluent.
- Implement Water Sensitive Urban Design in suburbs and households within the region.
- Reduce the volume of freshwater runoff.
- Improve management practices to reduce the amount of sediment, nutrient and chemical runoff.
- Better legislative alignment (and cooperative management) for water use (primary production vs water for the environment).

- wetlands, riparian and foreshore vegetation, and link to management outcomes/practices.
- Gain better understanding of the total water cycle management for the Wide Bay Burnett region (for example, the catchment sources of sediment, pesticides, pine discharge and path in receiving waters etc.).
- Gain better understanding of groundwater processes, Acid Sulphate soils and pollution studies and link to management.
- Provide incentives for industry to undertake best management practice, education relationship and technical support for bettering water quality.
- Increase awareness of unaccounted costs of investment to assets such as poor water quality (for example, affects of pollution on prawn fisheries, affects of sediment loads on seagrass to ecotourism).
- Undertake event monitoring and remote sensing of receiving waters and link to habitat condition monitoring.
- Model sediments and nutrients coming from the Mary River (including the cumulative effects).
- Provide support to (and standardise) community groups monitoring programs for total water cycle management (i.e. water quality, habitat protection, vegetation filter restoration etc.) and integrate into regional planning/management.

#### Initial Priorities:

- Establish the baselines required for monitoring (for example, corals, scribbled angelfish, mud crabs etc.) and seek community involvement and support.
- Assess the ability to implement the education and monitoring components of the Healthy Waterways Strategy for the Wide Bay Burnett region.
- Seek long-term agreement to maintain and extend the water quality monitoring programs, and other community total water cycle management programs for the region.
- Integrate legislative and community monitoring programs into a regional context.

## 5.4.7 MONITORING & EVALUATION OF THE ESTUARINE AND MARINE ECOSYSTEM ASSETS

The NRM Plan provides an opportunity to coordinate the region's effort towards monitoring the state of the environment and the health and condition of our natural resources. We need both monitoring systems and an evaluation process to get a true picture of how we are tracking.

Monitoring systems are about 'measurements' and aim to tell us something the state or condition of an asset. Monitoring is generally about data collection, analysis and interpretation and uses indicators that tell us something about the important asset. The indicators are a particular aspect of an environmental asset we can measure over time. When we combine these measurements with a good understanding of how an environmental systems works we are able to assess the condition and identify any trends associated with an asset.

Evaluation tells us about the effectiveness of what we have been doing and if we have achieved the results and outcomes we are looking for from our activities. Evaluation is based on having a good understanding of the 'cause and effect' relationship between the actions we undertake and the variety of outcomes and changes we hope to see along the way to achieving our targets.

The following information details the Monitoring and Evaluation Framework for this Asset Group.

#### MONITORING FRAMEWORK

The following Table outlines the methods proposed to monitor our progress towards the achievement of our targets. In many cases Baseline data does not exist and is the first action necessary to complete to establish an operable monitoring program.

| Theme         | Indicator                                  | Data Availability |                                                                                                                                                                                           | Comments                                                                                                                                                                                                                                                                                                                                                                                                                           |
|---------------|--------------------------------------------|-------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|               |                                            | (Y / N) Comments  |                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Coastal Ocean | CM1 – Extent of                            | Υ                 | CEM1 – Baseline needs development                                                                                                                                                         | The extent of development along the coast/shoreline can be determined                                                                                                                                                                                                                                                                                                                                                              |
| Processes     | development along the coastline/shoreline. |                   | with existing datasets:  For erosion prone areas –                                                                                                                                        | by combining the erosion prone area and undeveloped tidal waterway datasets.                                                                                                                                                                                                                                                                                                                                                       |
|               |                                            |                   | <ul> <li>Statutory Erosion prone areas 2012</li> <li>Current DCDB layer 2012</li> <li>Satellite imagery 2012</li> <li>Town planning precincts (current and future zones) date?</li> </ul> | Statutory Erosion prone areas for WBB region are mapped as of 2012, overlaid with current DCDB layer, satellite imagery and town planning precincts (current and future zones) to provide extent of coastal development within erosion prone areas.                                                                                                                                                                                |
|               |                                            |                   | Undeveloped tidal waterways (shoreline)—  Existing 2007 baseline created for the draft WBB Regional Coastal Management Plan (see metadata for further information)                        | The undeveloped tidal waterway dataset would need to be updated and some attributes added (since the introduction of the urban footprint in the WBB region, for example). The undeveloped tidal waterways map shows where development along the shore is located, and if placed within appropriate urban areas, close to infrastructure, and limits loss of tidal wetlands (the natural buffers from ocean processes to the coast) |

|                                        | CM2 – Extent of tidal<br>wetlands and dunes<br>affected by ocean<br>processes       | Y       | CEM2 – Baseline needs review with existing datasets:  For tidal wetlands:  • Queensland Wetland Data (estuarine component - Version 3, 2012)  For significant coastal dunes:  • Existing 2006 baseline created for the draft WBB Regional Coastal Management Plan (see metadata for further information)                                                                                                                                                                                                                                                                                                                               | The extent of tidal wetlands and significant coastal dunes can be determined by combining the tidal wetland and coastal dune datasets.  Types of tidal wetlands to be included in the dataset are those defined by the estuarine component of the Queensland wetland data.  MangroveWatch baseline is as 2010 and could be integrated into the Regional Ecosystem framework.  Significant coastal dunes are those considered to be a system or landform that has a high degree of ecological integrity and biodiversity conservation value (and satisfies a number of criteria as defined in the M&E strategy – (note this definition is taken from the State Coastal Management Plan of 2001)).                                                                                                                                                                    |
|----------------------------------------|-------------------------------------------------------------------------------------|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Coastal, Estuarine and Marine Habitats | CM3 - Extent of seagrass beds, tidal wetlands, and nearshore coral reef communities | Y and N | <ul> <li>CEM3 – Incomplete existing datasets for each attribute:</li> <li>Seagrass - existing 2002 baseline (but does not take into consideration major changes due to flooding events) and therefore would require updating. (Consider using 2012/2013 baseline currently being developed by the Australian Centre for Ecological Analysis and Synthesis)</li> <li>Tidal wetlands - Queensland Wetland Data (estuarine component - Version 3, 2012)</li> <li>Nearshore coral reef communities – existing 2008 baseline for Hervey Bay corals (see Zann 2012a, b) but scant information available for remaining WBB region.</li> </ul> | There are limited marine datasets available for the WBB region. A program has been established to classify and map estuarine and marine habitats of the Wide Bay region by 2013 (Queensland Wetlands Program Project) and will include a number of other estuarine and marine habitats for future indicators.  Types of tidal wetlands to be included in the dataset are those defined by the estuarine component of the Queensland wetland data.  MangroveWatch baseline is as 2010 and could be integrated into the Regional Ecosystem framework.  The nearshore coral reef community baseline could be developed based on a number published reports and data including Beger study (2010), Butler (2012 in draft), DeVantier (2010), Alquezar & Boyd (2007), Alquezar et al (2011), Bleachwatch report, Bennett (2004), Thorogood (1993), RHIS surveys (Parks). |

| Species and and extent of Indo-pacific humpback dolphin, dugong, turtles, shorebirds, water mouse | <ul><li>each attribute:</li><li>Indo-pacific humpback dolphin</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | planning process and data collection (refer ex-DERM metadata).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|---------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| dugong, turtles,                                                                                  | Indo-pacific humpback dolphin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| and grey nurse sharks                                                                             | <ul> <li>Known population baseline (2007), see Cagnazzi report 2006 to BMRG</li> <li>Extent baseline 2006 created for the draft WBB Regional Coastal Management Plan (see metadata for further information)</li> <li>Dugong         <ul> <li>Known population baseline unknown?</li> <li>Extent baseline (2007, 2010) based on a relative density grid provided by Helene Marsh (see metadata for further information)</li> </ul> </li> <li>Turtle         <ul> <li>Known population baseline (unknown)?</li> <li>Extent baseline (unknown) but could be developed based on Col Limpus database, tagging project, and Go-slow project</li> </ul> </li> <li>Shorebirds         <ul> <li>Known populations baseline (2007) based on the Queensland Wader Study Group surveys</li> <li>Extent baseline (2007) for roosts and habitats created for the draft WBB Regional Coastal Management Plan (see metadata for further information)</li> </ul> </li> </ul> | There are limited marine species datasets available for the WBB region, particularly the mapping of their extent. Known populations are based on taggings (mark and recapture), sightings including photoID etc. Extent is based on either feeding, roosting/nesting, resting sites.  A number of datasets are needed to be updated or created from a variety of data sources and attributes. There are a number of community groups involved in monitoring species within the WBB region and data could be further integrated into the baselines. For example, Coastcare groups are currently monitoring the water mouse at certain locations. |

|                        |            | Water mouse     Known population baseline (unknown)?     Extent baseline (2006) created for the draft WBB Regional Coastal Management Plan (see metadata for further information)      Grey nurse shark     Known population baseline (2011) (cited in Bansemer (2009) and Bansemer and Bennett (2011))     Extent baseline (2006) based on aggregation site at Wolf Rock, unknown other aggregation sites at present (refer Flora and Fauna International & Grey Nurse Shark Watch) as they are currently assessing further sites | Refer CHRIS web on the Agriculture, Fisheries and Farming website for metadata and other data sources. |
|------------------------|------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|
| CM5 - Recreational a   | nd Y and N | CEM5 – Incomplete datasets for each                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                        |
| commercial wild fisher |            | attribute but could be developed using:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                        |
| stocks of macker       | el,        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                        |
| prawns, spanner crabs  |            | Commercial fisheries log books                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                        |
|                        |            | Commercial seasonal, bag and size                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                        |
|                        |            | <ul><li>limits</li><li>Fisheries stock estimates (reviews and</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                        |
|                        |            | reports)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                        |
|                        |            | Impoundment stock data?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                        |
|                        |            | Voluntary recreational catch records                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                        |
|                        |            | Fishing club and charter records                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                        |
|                        |            | <ul><li>Reef-check fish monitoring projects</li><li>CAP-reef</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                        |
|                        |            | Correlate with freshwater flows, flood                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                        |
|                        |            | mapping                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                        |
| CM6 - ?                |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                        |
| CM7 - ?                |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                        |
|                        |            | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                        |

| Coastal Water | CEM8 – Coastal water                                | Y and N | Incomplete datasets for each attribute:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Further work is required to develop the event information for chlorophyll        |
|---------------|-----------------------------------------------------|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|
| Quality       | quality in receiving waters                         |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | a (using remote sensing and sediment levels etc.)                                |
| Quality       | quality in receiving waters (biological indicators) |         | <ul> <li>Chlorophyll a – EHP's ambient WQ monitoring for estuarine. No event information currently.</li> <li>Seagrass - existing 2002 baseline (but does not take into consideration major changes due to flooding events) and therefore would require updating. (Consider using 2012/2013 baseline currently being developed by the Australian Centre for Ecological Analysis and Synthesis)</li> <li>Corals (nearshore coral reef communities) – existing 2008 baseline for Hervey Bay corals (see Zann 2012a, b) but scant information available for remaining WBB region.</li> <li>Scribbled Angelfish – no existing baseline (refer Berger UQ, Zann and</li> </ul> | Establishing a baseline for scribbled angelfish and mud crabs/holes is required. |
|               |                                                     |         | <ul> <li>Wortel ex-DERM datasets/reports)</li> <li>Mud Crabs and crab holes – no existing baseline (refer Mangrove Watch and Fisheries for bioassays)</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                  |

## **EVALUATION FRAMEWORK**

The following Table outlines the methods proposed to evaluate the effectiveness of our programs and activities and to determine if we have achieved out desired objectives within each target area.

| Theme                                  | <b>Evaluation Questions</b> | Why this Question | Available information                | Results 2005-2014                  |
|----------------------------------------|-----------------------------|-------------------|--------------------------------------|------------------------------------|
| Coastal and Ocean                      |                             |                   | To be completed                      | To be completed                    |
| Processes                              |                             |                   | during the Second<br>Round of Expert | during the Second Round of Expert  |
|                                        |                             |                   | Panels to be held in October 2014.   | Panels to be held in October 2014. |
| Coastal Estuarina                      |                             |                   | in October 2014.                     | October 2014.                      |
| Coastal, Estuarine and Marine Habitats |                             | ·                 | (0                                   | 1                                  |
| Significant Species and Fisheries      |                             |                   | 1                                    |                                    |
| Coastal Water<br>Quality               |                             |                   | (0),                                 |                                    |